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ABSTRACT  

Structural Equation Modeling (SEM) is a statistical approach widely used to analyze causal relationships between 

latent and observed variables. A key issue in SEM lies in selecting an appropriate parameter estimation method, as 

it strongly affects the accuracy and interpretation of results. Among the most common estimation techniques are 

Maximum Likelihood (ML) and Weighted Least Squares (WLS). This study aims to compare the performance of 

ML and WLS in estimating path coefficients within SEM analysis. Using simulated data generated with the simulate 

Data function from a predefined structural model, three scenarios are examined with sample sizes of 500 and 1000. 

Data transformation procedures are applied to ensure consistency before model testing. Each SEM model is then 

estimated using both ML and WLS, and the results are evaluated through Root Mean Square Error of Approximation 

(RMSEA) values obtained from 100 replications. Findings indicate that WLS generally outperforms ML in terms of 

model fit and stability. In the first scenario with a sample size of 500, WLS achieves a lower average RMSEA 

(0.0141) compared to ML (0.0172). With a sample size of 1000 in the second scenario, both methods produce similar 

RMSEA values (0.009 for WLS and 0.0096 for ML), though WLS demonstrates lower variability. In the third 

scenario, also with a sample size of 1000, WLS records an average RMSEA of 0.0074 versus 0.0092 for ML. Overall, 

the results suggest that WLS is more effective and reliable than ML in providing accurate parameter estimates across 

different data conditions and sample sizes. 
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Introduction 

Structural Equation Modeling (SEM) Analysis is a complex statistical method used to test and 

measure causal relationships between observed and unobserved variables in a conceptual model (Hair Jr 

et al., 2021; Kline, 2023). SEM allows researchers to examine simultaneous relationships between latent 

variables (variables that cannot be directly measured) (Simarmata et al., 2024; Yu, 2025) and measured 

variables (indicators) (Aghaei et al., 2023). When analyzing the relationships between latent variables and 

indicators in Structural Equation Modeling (SEM), parameter estimation is performed. Parameter 

estimation is the process of determining the values of model parameters that describe the extent to which 

latent variables can be explained by measured indicator variables (Kong et al., 2022; Pratiwi et al., 2020). 
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The initial step involves formulating the structural equation of the SEM model by linking latent 

variables based on their indicators. Once the model is established, a parameter estimation method is 

chosen, such as Maximum Likelihood (ML) or least squares methods like Ordinary Least Squares (OLS) 

or Weighted Least Squares (WLS), depending on the nature of the data and the distribution encountered. 

Parameter estimation involves estimating the values of model parameters that best explain the covariance 

patterns between indicator variables and latent variables (Bakk & Kuha, 2021; Hayes, 2021; Surianti, 

2021). This process involves finding parameter values that minimize the differences between the model 

predictions and the observed empirical data (Khairi et al., 2021). Initialization of initial parameter values 

is crucial, followed by using optimization algorithms to iteratively update these values (Chauhan & Yadav, 

2024). The results of parameter estimation provide information about the strength and direction of 

relationships between latent variables and their indicators. Model evaluation is then performed using 

various model fit indices and statistical tests to ensure the generated model fits the observed data. If the 

evaluation results indicate a poor fit, model adjustments can be made, such as adding or removing paths 

or modifying the structural and measurement equations (Ardi, 2020; Wang & Cai, 2024). 

The selection of parameter estimation methods in Structural Equation Modeling (SEM) analysis is 

crucial, as it can significantly affect the interpretation of results. Therefore, this study will compare the 

parameter estimation results of ML and WLS on path coefficients in SEM analysis. The choice of WLS 

is informed by the findings of Dany (2017), which demonstrated that WLS provided more accurate 

estimates than Ordinary Least Squares (OLS). To strengthen this evidence, the present study undertakes 

a systematic comparison between WLS and the widely applied ML method in SEM parameter estimation. 

Unlike previous studies, the novelty of this research lies in its integration of simulation-based data 

generation with comparative evaluation across different model types (saturated, independence, and 

hypothesized structural models), thereby providing a more rigorous and comprehensive assessment of 

estimation accuracy and model fit. This approach not only offers empirical validation of estimation 

techniques but also contributes methodological insights into the conditions under which WLS can serve 

as a robust alternative to ML in SEM applications. 

Recent developments in Structural Equation Modeling (SEM) have highlighted increasing concerns 

regarding the suitability of parameter estimation methods under different data conditions, particularly 

when assumptions of multivariate normality and continuous measurement are violated. Although 

Maximum Likelihood (ML) estimation remains the most widely adopted approach due to its theoretical 

properties and computational efficiency, numerous recent studies have reported its sensitivity to non-

normal data, discretized indicators, and model complexity. As a result, alternative estimation methods 
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such as Weighted Least Squares (WLS) have gained growing attention, especially in simulation-based and 

applied SEM research. 

Existing studies predominantly focus on comparing ML with other estimators in confirmatory factor 

analysis (CFA) or under limited structural conditions, often without explicitly examining the stability of 

path coefficient estimation across different model structures and sample sizes. Moreover, empirical 

evidence that systematically evaluates estimation accuracy using goodness-of-fit indicators—particularly 

RMSEA—across saturated, independence, and hypothesized structural models remains scarce. This gap 

indicates that the current state of the art has not fully addressed how estimation methods perform when 

model complexity and sample size vary simultaneously. 

Therefore, there is an urgent need for a comprehensive simulation-based investigation that not only 

compares ML and WLS but also evaluates their robustness and stability across different structural 

scenarios. Addressing this need, the present study integrates simulated data generation with repeated 

estimation procedures to assess the performance of ML and WLS based on RMSEA behavior. By 

positioning RMSEA as a central evaluation metric and examining multiple model scenarios, this research 

contributes to the advancement of SEM methodology by providing clearer guidance on the optimal choice 

of estimation methods under varying data and model conditions. 

 

Methods  

To enhance methodological clarity and provide a clearer overview of the research procedure, this 

study adopts a structured simulation-based workflow. The overall methodological process, from data 

generation to model evaluation, follows a sequential set of stages illustrated in Figure 1 and described 

algorithmically in the following subsections. 

 

Figure 1. Stages of the Proposed Simulation-Based SEM Estimation Procedure 

Specify SEM 
Model

Generate 
Simulated 

Data 
(simulateData)

Data 
Transformatio

n (abs → 
round → +1)

Model 
Specification

(Saturated, 
Independence, 

Structural)

Parameter 
Estimation

(ML & WLS)

Simulation 
Replication 

(100 
iterations)

RMSEA 
Computation

Comparison of 
ML vs WLS

https://creativecommons.org/licenses/by/4.0/


 

 
 438  

 
This work is distributed under the terms of Creative Commons Attribution 4.0 International License 

Volume 7, Nomor 2, Januari 2026, pp. 435-451 
 

For completeness, the methodological procedure of this study can be summarized algorithmically 

as follows: 

 

(1) Specify the SEM measurement and structural model. 

(2) Generate simulated data using the simulateData() function for a given sample size. 

(3) Transform the simulated data into positive integer values (range 1-5). 

(4) Specify the saturated model, independence model, and hypothesized structural model. 

(5) Estimate model parameters using Maximum Likelihood (ML) and Weighted Least Squares (WLS). 

(6) Repeat the estimation process for 100 replications. 

(7) Compute RMSEA values for each replication and estimation method. 

(8) Compare estimation performance based on RMSEA stability and average values. 

In this study, the function simulateData() is used to generate simulated data based on a predefined 

structural model (Grønneberg et al., 2022). This function allows for the creation of synthetic data that 

follows the structure and relationships between latent and observed variables according to the model being 

tested (Fonseca & Bacao, 2023). The model includes several latent variables measured by specific 

indicators and exhibits clear regression relationships (Van der Loo, 2012). In its implementation, 

simulateData() takes two main parameters: the predefined structural model and the sample size 

(sample.nobs), which determines the number of observations in the simulated dataset (Finch H., 2024). 

After generating the simulated data using simulateData(), further transformation is performed on 

the data. The first step in this transformation is to take the absolute value of each element in the simulated 

dataset using the abs() function. This step ensures that all values in the dataset are non-negative. Next, 

these absolute values are rounded to the nearest integer using the round() function, which converts 

continuous values to discrete values more suitable for certain types of analysis. The final step is to add 1 

to each element in the rounded dataset to ensure that there are no zero values and all minimum values are 

1.  This transformation process aims to produce a dataset consisting of positive integer values ranging 

from 1 to 5. These steps help avoid issues that may arise from negative or zero values in the analysis and 

make the data more suitable for specific types of analysis that require categorical values. Thus, the final 

result of this transformation is the dataset simData.n, which is ready for further analysis in this study. 

As an example of implementation, a simple SEM model is defined and sample sizes of 500 and 

1000 are specified (Rožman et al., 2020). The simulated data is generated using the simulateData() 

function and then processed into positive integer values. These steps ensure that the data used in the 

analysis is consistent with the predefined model and suitable for the intended analysis. The results of the 

transformation are displayed and verified to ensure data integrity before being used for further analysis. 

https://creativecommons.org/licenses/by/4.0/


 

 
 439  

 
This work is distributed under the terms of Creative Commons Attribution 4.0 International License 

Volume 7, Nomor 2, Januari 2026, pp. 435-451 
 

This implementation example demonstrates how the use of the simulateData() function and data 

transformation can provide a synthetic dataset appropriate for research needs. 

In the parameter estimation stage, both Maximum Likelihood (ML) and Weighted Least Squares 

(WLS) estimation methods are implemented using an iterative numerical optimization procedure. 

Specifically, parameter estimation is carried out using the Newton–Raphson algorithm, which updates 

parameter values iteratively based on the first and second derivatives of the objective function. At each 

iteration, the gradient vector and Hessian matrix are computed to adjust the parameter estimates until 

convergence is achieved according to a predefined tolerance criterion. This iterative estimation process is 

applied consistently across all simulation replications and scenarios, as illustrated in the methodological 

stages presented in Figure 1. 

Based on this foundation, the generated data are subsequently applied to three distinct types of 

models in order to evaluate model performance and overall fit under varying structural assumptions. In 

particular, the analyses are conducted using the saturated model, the independence (null) model, and the 

theoretically proposed structural equation model. This comparative framework enables the study to 

examine not only the adequacy of the hypothesized model but also its relative performance with respect 

to boundary conditions, thereby providing a more rigorous assessment of parameter estimation and model 

fit. The generated data will be applied to the following three types of models: 

a) Scenario 1 

n=500 

# Measurement model 

  𝐿1 = ~ 𝑥1 +  𝑥2 +  𝑥3 

  𝐿2 = ~ 𝑦1 +  𝑦2 +  𝑦3 +  𝑦4 

  𝐿3 = ~ 𝑦5 +  𝑦6 +  𝑦7 +  𝑦8 

  # Regressions 

  𝐿2 ~ 𝐿1 

  𝐿3 ~ 𝐿1 +  𝐿2 

Scenario 1 is designed to evaluate the performance of Maximum Likelihood (ML) and Weighted Least 

Squares (WLS) estimation methods under a moderate sample size condition (n = 500). This scenario 

employs a relatively simple measurement and structural model to examine the stability and accuracy 

of path coefficient estimation when data availability is limited. The comparison focuses on how each 

estimation method performs in terms of model fit, as measured by RMSEA, across repeated 

simulations. 
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b) Scenario 2 

n=1000 

# measurement model 

𝐿1 = ~ 𝑥1 +  𝑥2 +  𝑥3 

𝐿2 = ~ 𝑥4 +  𝑥5 +  𝑥6 

𝐿3 = ~ 𝑦1 +  𝑦2 +  𝑦3 +  𝑦4 

𝐿4 = ~ 𝑦5 +  𝑦6 +  𝑦7 +  𝑦8 

𝐿5 = ~ 𝑧1 +  𝑧2 +  𝑧3 

# regressions 

   𝐿3 ~ 𝐿1 

𝐿4 ~ 𝐿1 +  𝐿3 

𝐿5 ~ 𝐿4 + 𝐿2 

𝐿2 ~ 𝐿1 

Scenario 2 investigates the performance of ML and WLS estimation methods under a larger sample 

size condition (n = 1000) with an increased number of latent variables and structural relationships. 

This scenario is intended to assess whether increasing sample size improves estimation accuracy and 

model fit stability, as well as to examine potential differences between ML and WLS when applied 

to more complex SEM structures. 

c) Scenario 3 

n=1000 

# measurement model 

 𝐿1 = ~ 𝑥1 +  𝑥2 +  𝑥3 

 𝐿2 = ~ 𝑥4 +  𝑥5 +  𝑥6 

 𝐿3 = ~ 𝑦1 +  𝑦2 +  𝑦3 +  𝑦4 

 𝐿4 = ~ 𝑦5 +  𝑦6 +  𝑦7 +  𝑦8 

 𝐿5 = ~ 𝑗𝑠1 +  𝑗𝑠2 +  𝑗𝑠3 

 𝐿6 = ~ 𝑤𝑙1 +  𝑤𝑙2 +  𝑤𝑙3 +  𝑤𝑙4 

 # regressions 

 𝐿3 ~ 𝐿1 

 𝐿4 ~ 𝐿1 +  𝐿3 

 𝐿5 ~ 𝐿4 +  𝐿2 

 𝐿6 ~ 𝐿5 +  𝐿4 
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 𝐿2 ~ 𝐿1 

Scenario 3 further extends the analysis by applying ML and WLS estimation methods to a more 

complex structural model using a large sample size (n = 1000). This scenario emphasizes the 

robustness of each estimation method under higher model complexity, allowing for a comprehensive 

evaluation of their consistency and reliability in estimating path coefficients and achieving optimal 

model fit. 

To evaluate model fit across estimation methods and simulation replications, this study employs the 

Root Mean Square Error of Approximation (RMSEA) as the primary goodness-of-fit index. RMSEA is a 

widely used fit measure in Structural Equation Modeling (SEM) that assesses the degree to which a model 

approximates the population covariance structure while accounting for model complexity. Unlike absolute 

fit indices, RMSEA penalizes overly complex models and provides an assessment of model 

misspecification per degree of freedom (Lai & Green, 2016). 

Mathematically, RMSEA is computed based on the model chi-square statistic, degrees of freedom, 

and sample size, and is expressed as: 

𝑅𝑀𝑆𝐸𝐴 = √max(
𝜒2 − 𝑑𝑓

𝑑𝑓(𝑁 − 1)
, 0)                       (1) 

where 𝜒2denotes the chi-square value of the fitted SEM model, 𝑑𝑓represents the degrees of freedom, and 

𝑁is the sample size. Lower RMSEA values indicate better model fit, with values below 0.05 generally 

interpreted as close fit and values between 0.05 and 0.08 indicating acceptable fit. 

In the simulation framework of this study, RMSEA is computed at each iteration of the estimation 

process. For each replication, the SEM model is estimated using Maximum Likelihood (ML) and 

Weighted Least Squares (WLS), after which the corresponding chi-square statistic and degrees of freedom 

are obtained. These quantities are then used to calculate the RMSEA value for that iteration. This 

procedure is repeated for 100 iterations for each scenario and estimation method. The sequence of RMSEA 

values obtained across iterations forms the basis for evaluating estimation performance and stability. 

Accordingly, RMSEA values are plotted against the iteration index, where the X-axis represents the 

simulation iterations and the Y-axis represents the corresponding RMSEA values. This visualization 

allows for a direct comparison of the average RMSEA levels and variability between ML and WLS across 

different scenarios. 
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Results and Discussion  

Structural Equation Modeling (SEM) is a statistical analysis technique that combines factor analysis 

and path analysis to model the relationships between latent variables and observed variables. In SEM, 

regression coefficients (path coefficients) can be estimated using various methods, including Maximum 

Likelihood (ML) and Weighted Least Squares (WLS). The Maximum Likelihood (ML) method aims to 

find parameter values that maximize the likelihood (fit) of the observed data. 

𝐿(𝜃) = 𝑓(𝑌 ∣ 𝜃)                 (2) 

𝐿(𝜃) =
1

(2𝜋)
𝑛𝑝
2 |𝛴(𝜃)| 

𝑛
2

  𝑒𝑥𝑝 (−
1

2
∑(𝑦𝑖 − 𝜇(𝜃))

𝑇
𝑛

𝑖=1

𝛴(𝜃)−1(𝑦𝑖 − 𝜇(𝜃))) 

ℓ(𝜃) = 𝑙𝑜𝑔𝐿(𝜃) 

ℓ(𝜃) = −
𝑛

2
(𝑙𝑜𝑔|Σ(𝜃)| + 𝑡𝑟(𝑆Σ(𝜃)−1) − 𝑝 𝑙𝑜𝑔(2𝜋)) 

𝜕ℓ(𝜃)

𝜕𝜃
= 0 

𝜕ℓ(𝜃)

𝜕𝜃
=

𝜕

𝜕𝜃
(−

𝑛

2
(𝑙𝑜𝑔|Σ(𝜃)| + 𝑡𝑟(𝑆Σ(𝜃)−1) − 𝑝 𝑙𝑜𝑔(2𝜋))) 

The derivative of the log-likelihood function consists of two components, the first is from 𝑙𝑜𝑔|Σ(𝜃)|, 

which is: 

  𝜕𝑙𝑜𝑔|Σ(𝜃)|

𝜕𝜃
= 𝑡𝑟 (

Σ(𝜃)−1𝜕Σ(𝜃)

𝜕𝜃
) 

and 𝑡𝑟(𝑆Σ(𝜃)−1) 

 

  𝜕𝑡𝑟(𝑆Σ(𝜃)−1)

𝜕𝜃
= −𝑡𝑟 (

SΣ(𝜃)−1𝜕Σ(𝜃)Σ(𝜃)−1

𝜕𝜃
) 

Combining the two derivatives, the result is: 

𝜕ℓ(𝜃)

𝜕𝜃
= −

𝑛

2
(𝑡𝑟 (

Σ(𝜃)−1𝜕Σ(𝜃)

𝜕𝜃
) − 𝑡𝑟 (

SΣ(𝜃)−1𝜕Σ(𝜃)Σ(𝜃)−1

𝜕𝜃
)) 

−
𝑛

2
(𝑡𝑟 (

Σ(𝜃)−1𝜕Σ(𝜃)

𝜕𝜃
) − 𝑡𝑟 (

SΣ(𝜃)−1𝜕Σ(𝜃)Σ(𝜃)−1

𝜕𝜃
)) = 0 

𝑡𝑟 (
Σ(𝜃)−1𝜕Σ(𝜃)

𝜕𝜃
) − 𝑡𝑟 (

SΣ(𝜃)−1𝜕Σ(𝜃)Σ(𝜃)−1

𝜕𝜃
) = 0 

https://creativecommons.org/licenses/by/4.0/


 

 
 443  

 
This work is distributed under the terms of Creative Commons Attribution 4.0 International License 

Volume 7, Nomor 2, Januari 2026, pp. 435-451 
 

𝑡𝑟 (
Σ(𝜃)−1𝜕Σ(𝜃)

𝜕𝜃
) = 𝑡𝑟 (

SΣ(𝜃)−1𝜕Σ(𝜃)Σ(𝜃)−1

𝜕𝜃
) 

To solve this equation, we need a system of equations that connects the model parameters θ with the data. 

In practice, this is done using numerical methods such as the Newton-Raphson method, which is an 

iterative technique that uses information from the gradient and Hessian to update parameter estimates. To 

apply the Newton-Raphson method, we also need the second derivative of the log-likelihood function with 

respect to the parameter θ, known as the Hessian matrix (the matrix of second derivatives of the log-

likelihood function) (Willis et al., 2020): 

𝐻(𝜃) =
𝜕2ℓ(𝜃)

𝜕𝜃𝜕𝜃𝑇      (3) 

 

For the log-likelihood function in the context of the multivariate normal distribution, the first component 

of the Hessian originating from 𝑙𝑜𝑔|Σ(𝜃)| is: 

𝜕2𝑙𝑜𝑔|Σ(𝜃)|

𝜕𝜃𝜕𝜃𝑇 = −𝑡𝑟 (
Σ(𝜃)−1𝜕Σ(𝜃)Σ(𝜃)−1𝜕Σ(𝜃)

𝜕𝜃𝜕𝜃𝑇 )  (4) 

 

The second component comes from 𝑡𝑟(𝑆Σ(𝜃)−1): 

 

𝜕2𝑡𝑟(𝑆Σ(𝜃)−1)

𝜕𝜃𝜕𝜃𝑇 = 𝑡𝑟 (
SΣ(𝜃)−1𝜕Σ(𝜃)Σ(𝜃)−1𝜕Σ(𝜃)Σ(𝜃)−1

𝜕𝜃𝜕𝜃𝑇 )  (5) 

 

Combining these components, we obtain the Hessian of the log-likelihood: 

 

𝐻(𝜃) = −
𝑛

2
(−𝑡𝑟 (

Σ(𝜃)−1𝜕Σ(𝜃)Σ(𝜃)−1𝜕Σ(𝜃)

𝜕𝜃𝜕𝜃𝑇 ) + 𝑡𝑟 (
SΣ(𝜃)−1𝜕Σ(𝜃)Σ(𝜃)−1𝜕Σ(𝜃)Σ(𝜃)−1

𝜕𝜃𝜕𝜃𝑇 )) (6) 

Equations (3)-(6) provide the mathematical foundation required for implementing the Newton-

Raphson optimization method in parameter estimation. These equations define the gradient vector and the 

Hessian matrix of the log-likelihood function, which are essential for iteratively updating the parameter 

estimates. Based on these formulations, the Newton–Raphson method is applied through the following 

procedural steps. Steps of the Newton-Raphson method (Pho, 2022) are as follows: 

1. Determine an initial value of the parameter vector, denoted as 𝜃0. This initial estimate may be obtained 

from prior information, simplified assumptions, or default starting values provided by the estimation 

software. 
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2. At the 𝑡-th iteration, compute the gradient vector 𝛻ℓ(𝜃𝑡), which consists of the first derivatives of the 

log-likelihood function, and compute the Hessian matrix 𝐻(𝜃𝑡), which contains the second derivatives.  

3. Determine the inverse of the Hessian matrix 𝐻(𝜃𝑡)−1, which is required to adjust the parameter 

estimates. 

4. Update the parameter vector using the Newton–Raphson update rule: 

𝜃𝑡+1 = 𝜃𝑡 − 𝐻(𝜃𝑡)−1𝛻ℓ(𝜃𝑡)   (7) 

where ∇ℓ(𝜃) denotes the gradient vector of the log-likelihood function. 

5. The iterative process continues until convergence is achieved, that is, when the change in parameter 

estimates between two successive iterations becomes sufficiently small: 

|𝜃(𝑡 + 1) − 𝜃(𝑡)| < 𝜖    (8) 

where 𝜖 is a pre-set tolerance.  

Once convergence is reached, 𝜃 is the parameter estimate that maximizes the log-likelihood 

function. The results are evaluated by examining the model fit using RMSEA. Various metrics can be 

used to check the fit, but this study uses RMSEA because it is currently one of the most popular measures 

of goodness-of-model fit within SEM (Lai & Green, 2016). 

Next, the Weighted Least Squares (WLS) method is used to address heteroscedasticity or correlation 

among measurement errors. In the context of SEM, to minimize the difference between observed 

parameters and those predicted by the model, considering the appropriate weight matrix. The WLS 

objective function is expressed as follows: 

𝐹(𝜃) = (𝑠 − 𝜎(𝜃))′𝑊(𝑠 − 𝜎(𝜃))  (9) 

 

Parameter estimation is done by minimizing the WLS objective function: 

𝜃 = 𝑎𝑟𝑔 min
𝜃

𝐹(𝜃)    (10) 

The minimization process involves iterations until we reach the parameter value that minimizes 

𝐹(𝜃). This process involves a vector 𝑠 consisting of observed sample covariances or correlations, which 

are the empirical data from the sample, while the model parameter vector 𝜎(𝜃) includes predicted 

covariances or correlations dependent on parameter 𝜃. The weight matrix 𝑊, chosen as the inverse of the 

variance-covariance matrix of 𝑠, provides efficient estimation in the context of heteroscedasticity: 

𝑊 = 𝑉𝑎𝑟(𝑠)−1    (11) 

The minimization process involves calculating the gradient and Hessian of 𝐹(𝜃). The gradient of the 

objective function 𝐹(𝜃) is the vector of first derivatives of 𝐹(𝜃) with respect to 𝜃: 

𝛻𝐹(𝜃) = −2𝑊(𝑠 − 𝜎(𝜃))
(𝜕𝜎(𝜃))

𝜕𝜃
   (12) 
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The Hessian of the objective function 𝐹(𝜃) is the matrix of second derivatives of 𝐹(𝜃) with respect to 𝜃: 

𝐻(𝜃) = 2 (
𝜕𝜎(𝜃)

𝜕𝜃
)

′
𝑊 (

𝜕𝜎(𝜃)

𝜕𝜃
)    (13) 

Using iterative methods like Newton-Raphson, the parameter update formula is obtained as: 

𝜃𝑡+1 = 𝜃𝑡 − 𝐻(𝜃𝑡)−1∇𝐹(𝜃𝑡)   (14) 

Equation (14) describes the Newton–Raphson update rule for parameter estimation. Here, 𝜃𝑡 is the 

parameter vector at the t-th iteration,  ∇𝐹(𝜃𝑡 denotes the gradient of the objective function with respect to 

the parameter vector, and 𝐻(𝜃𝑡)−1 is the inverse of the Hessian matrix of second derivatives of  𝐹 

evaluated at 𝜃𝑡. This update iteratively adjusts the parameter estimates by moving in the direction 

determined by the inverse Hessian and the gradient until convergence is achieved, leading to the optimal 

solution. This study includes three main simulations evaluating the performance of each method under 

different data conditions. Each simulation tests the strengths and weaknesses of WLS and ML in providing 

accurate and reliable estimates. Results and discussions are detailed for each simulation, showing RMSEA 

values for each method over 100 repetitions. 

 

Figure 2. Comparison of RMSEA Values for the First Scenario 

 
The measurement model used in this study involves three main latent variables (Latent Variables). 

Variable 𝐿1 is measured using indicators 𝑥1, 𝑥2, and 𝑥3; 𝐿2 is measured by indicators 𝑦1, 𝑦2, 𝑦3, and 𝑦4; 

and 𝐿3 is measured by indicators 𝑦5, 𝑦6, 𝑦7, and 𝑦8. Regression analysis shows that 𝐿2 is predicted by 

𝐿1, while 𝐿3 is predicted by 𝐿1 and 𝐿2. Simulation results are shown in a plot depicting RMSEA values 
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over 100 iterations. The X-axis indicates the iterations, while the Y-axis shows the RMSEA values. In this 

plot, there are two lines representing two different methods or models. The red line (ML) shows RMSEA 

fluctuations with an average of 0.0172, while the blue line (WLS) shows different patterns with an average 

RMSEA of 0.0141. The RMSEA fluctuation analysis shows that both methods exhibit RMSEA variation 

over iterations, but the blue line tends to have lower and more stable RMSEA values compared to the red 

line. The lower average RMSEA value of the blue method (0.0141) indicates better model fit compared 

to the red method (0.0172). Therefore, based on these simulation results, the model or method represented 

by the blue line (WLS) shows better fit in terms of RMSEA compared to the model represented by the red 

line (ML). The overall conclusion of this study is that considering model fit based on RMSEA, the method 

represented by the blue line is a more optimal choice for application in this context. 

 

 

Figure 3. Comparison of RMSEA Values for the Second Scenario 

 

In the second scenario, the measurement model used in this study defines the relationship between 

latent variables (𝐿1, 𝐿2, 𝐿3, 𝐿4, 𝐿5) and observed variables: 

(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6, 𝑦7, 𝑦8, 𝑧1, 𝑧2, 𝑧3) 

Latent variable 𝐿1 is associated with 𝑥1, 𝑥2, and 𝑥3; 𝐿2 is associated with 𝑥4, 𝑥5, and 𝑥6; 𝐿3 is associated 

with 𝑦1, 𝑦2, 𝑦3, and 𝑦4; 𝐿4 is associated with 𝑦5, 𝑦6, 𝑦7, and 𝑦8; and 𝐿5 is associated with 𝑧1, 𝑧2, and 
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𝑧3. In the tested regression model, latent variable 𝐿3 is predicted by 𝐿1, 𝐿4 is predicted by 𝐿1 and 𝐿3, 𝐿5 

is predicted by 𝐿4 and 𝐿2, and 𝐿2 is predicted by 𝐿1. These relationships show how these latent variables 

influence each other in a complex structural model. The results shown in the graph indicate that both 

scenarios have very similar average RMSEA values, with ML slightly higher (0.0096 compared to 0.009 

for WLS). However, the graph also shows significant variation in RMSEA values during the looping 

process, possibly indicating fluctuations in model performance during iterations. 

 

Figure 4. Comparison of RMSEA Values for the Third Scenario 

In the third scenario, the measurement model used in this study defines the relationship between 

latent variables (𝐿1, 𝐿2, 𝐿3, 𝐿4, 𝐿5, 𝐿6) and observed variables: 

(𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6, 𝑦7, 𝑦8, 𝑗𝑠1, 𝑗𝑠2, 𝑗𝑠3, 𝑤𝑙1, 𝑤𝑙2, 𝑤𝑙3, 𝑤𝑙4) 

Latent variable 𝐿1 is measured by indicators 𝑥1, 𝑥2, and 𝑥3; 𝐿2 by 𝑥4, 𝑥5, and 𝑥6; 𝐿3 by 𝑦1, 𝑦2, 𝑦3, and 

𝑦4; 𝐿4 by 𝑦5, 𝑦6, 𝑦7, and 𝑦8; 𝐿5 by 𝑗𝑠1, 𝑗𝑠2, and 𝑗𝑠3; and 𝐿6 by 𝑤𝑙1, 𝑤𝑙2, 𝑤𝑙3, and 𝑤𝑙4. In the tested 

regression model, latent variable 𝐿3 is predicted by 𝐿1, 𝐿4 is predicted by 𝐿1 and 𝐿3, 𝐿5 is predicted by 

𝐿4 and 𝐿2, 𝐿6 is predicted by 𝐿5 and 𝐿4, and 𝐿2 is predicted by 𝐿1. These relationships illustrate how 

these latent variables influence each other in a complex structural model. The results shown in the graph 

indicate that both scenarios have relatively low average RMSEA values, with WLS having a slightly lower 

average (0.0074) compared to ML (0.0092). The graph also shows significant variation in RMSEA values 

during the looping process, possibly indicating fluctuations in model performance during iterations. 

The measurement and regression models used to test relationships among latent variables show that 

the Weighted Least Squares (WLS) method tends to have lower and more stable RMSE values compared 
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to the Maximum Likelihood (ML) method. In scenario 1, WLS has an average RMSEA of 0.0141, lower 

than ML's average of 0.0172. Scenario 2 shows very similar average RMSE values between the two 

methods, with ML slightly higher (0.0096) compared to WLS (0.009). Scenario 3 shows that WLS again 

performs better with an average RMSE of 0.0074 compared to ML's 0.0092. Overall, the simulation results 

from the three scenarios confirm that the WLS method provides better model fit and is more optimal 

compared to ML in the context of the structural models tested. 

Based on the three scenarios considering sample size, the Weighted Least Squares (WLS) method 

tends to provide better model fit compared to the Maximum Likelihood (ML) method, especially as the 

sample size increases. Consider the result study (Beauducel & Herzberg, 2009) and (Schweizer et al., 

2023) WLS better fit results under MLE (maximum likelihood estimation). In all scenarios, WLS 

consistently shows lower and more stable average RMSE values compared to ML, indicating that WLS is 

a more optimal estimation method for application in the context of the tested structural models, both for 

smaller sample sizes (𝑛 = 500) and larger ones (𝑛 = 1000). 

 

Conclusion  

This study compared the Weighted Least Squares (WLS) and Maximum Likelihood (ML) methods 

in path analysis using Structural Equation Modeling (SEM). The goal was to evaluate the effectiveness of 

both methods under different data conditions through threemain simulations. The first simulation results 

showed that the WLS method had an average RMSEA of 0.0141, lower than ML's average of 0.0172, 

indicating that WLS provided better model fit compared to ML with a sample size of 500. In the second 

simulation, although both methods showed very similar average RMSEA values (0.009 for WLS and 

0.0096 for ML), WLS was still superior with lower fluctuation and slightly lower average RMSEA 

compared to ML. This simulation was conducted with a larger sample size of 1000, showing that WLS 

still maintained better performance compared to ML. The third simulation again showed that WLS had a 

lower average RMSEA (0.0074) compared to ML (0.0092). This simulation, also with a sample size of 

1000, demonstrated the stability and superiority of WLS in providing better model fit. Overall, the results 

from the three scenarios confirm that the WLS method is superior in providing accurate and reliable 

parameter estimates in SEM analysis. The WLS method consistently shows lower and more stable average 

RMSEA values compared to ML, both for smaller and larger sample sizes. Therefore, WLS is a more 

optimal estimation method for application in the context of the structural models tested in this study. 

Future studies may extend this work by comparing WLS and ML with other SEM estimation methods, 

such as robust or Bayesian approaches, under different data distribution conditions and higher model 

complexity. Additionally, incorporating alternative goodness-of-fit indices alongside RMSEA and 
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applying the proposed framework to empirical datasets may further enhance the generalizability of the 

findings. 
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