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ABSTRACT

Structural Equation Modeling (SEM) is a statistical approach widely used to analyze causal relationships between
latent and observed variables. A key issue in SEM lies in selecting an appropriate parameter estimation method, as
it strongly affects the accuracy and interpretation of results. Among the most common estimation techniques are
Maximum Likelihood (ML) and Weighted Least Squares (WLS). This study aims to compare the performance of
ML and WLS in estimating path coefficients within SEM analysis. Using simulated data generated with the simulate
Data function from a predefined structural model, three scenarios are examined with sample sizes of 500 and 1000.
Data transformation procedures are applied to ensure consistency before model testing. Each SEM model is then
estimated using both ML and WLS, and the results are evaluated through Root Mean Square Error of Approximation
(RMSEA) values obtained from 100 replications. Findings indicate that WLS generally outperforms ML in terms of
model fit and stability. In the first scenario with a sample size of 500, WLS achieves a lower average RMSEA
(0.0141) compared to ML (0.0172). With a sample size of 1000 in the second scenario, both methods produce similar
RMSEA values (0.009 for WLS and 0.0096 for ML), though WLS demonstrates lower variability. In the third
scenario, also with a sample size of 1000, WLS records an average RMSEA of 0.0074 versus 0.0092 for ML. Overall,
the results suggest that WLS is more effective and reliable than ML in providing accurate parameter estimates across
different data conditions and sample sizes.
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Introduction

Structural Equation Modeling (SEM) Analysis is a complex statistical method used to test and
measure causal relationships between observed and unobserved variables in a conceptual model (Hair Jr
et al., 2021; Kline, 2023). SEM allows researchers to examine simultaneous relationships between latent
variables (variables that cannot be directly measured) (Simarmata et al., 2024; Yu, 2025) and measured
variables (indicators) (Aghaei et al., 2023). When analyzing the relationships between latent variables and
indicators in Structural Equation Modeling (SEM), parameter estimation is performed. Parameter
estimation is the process of determining the values of model parameters that describe the extent to which

latent variables can be explained by measured indicator variables (Kong et al., 2022; Pratiwi et al., 2020).
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The initial step involves formulating the structural equation of the SEM model by linking latent
variables based on their indicators. Once the model is established, a parameter estimation method is
chosen, such as Maximum Likelihood (ML) or least squares methods like Ordinary Least Squares (OLS)
or Weighted Least Squares (WLS), depending on the nature of the data and the distribution encountered.
Parameter estimation involves estimating the values of model parameters that best explain the covariance
patterns between indicator variables and latent variables (Bakk & Kuha, 2021; Hayes, 2021; Surianti,
2021). This process involves finding parameter values that minimize the differences between the model
predictions and the observed empirical data (Khairi et al., 2021). Initialization of initial parameter values
is crucial, followed by using optimization algorithms to iteratively update these values (Chauhan & Yadav,
2024). The results of parameter estimation provide information about the strength and direction of
relationships between latent variables and their indicators. Model evaluation is then performed using
various model fit indices and statistical tests to ensure the generated model fits the observed data. If the
evaluation results indicate a poor fit, model adjustments can be made, such as adding or removing paths
or modifying the structural and measurement equations (Ardi, 2020; Wang & Cai, 2024).

The selection of parameter estimation methods in Structural Equation Modeling (SEM) analysis is
crucial, as it can significantly affect the interpretation of results. Therefore, this study will compare the
parameter estimation results of ML and WLS on path coefficients in SEM analysis. The choice of WLS
is informed by the findings of Dany (2017), which demonstrated that WLS provided more accurate
estimates than Ordinary Least Squares (OLS). To strengthen this evidence, the present study undertakes
a systematic comparison between WLS and the widely applied ML method in SEM parameter estimation.
Unlike previous studies, the novelty of this research lies in its integration of simulation-based data
generation with comparative evaluation across different model types (saturated, independence, and
hypothesized structural models), thereby providing a more rigorous and comprehensive assessment of
estimation accuracy and model fit. This approach not only offers empirical validation of estimation
techniques but also contributes methodological insights into the conditions under which WLS can serve
as a robust alternative to ML in SEM applications.

Recent developments in Structural Equation Modeling (SEM) have highlighted increasing concerns
regarding the suitability of parameter estimation methods under different data conditions, particularly
when assumptions of multivariate normality and continuous measurement are violated. Although
Maximum Likelihood (ML) estimation remains the most widely adopted approach due to its theoretical
properties and computational efficiency, numerous recent studies have reported its sensitivity to non-

normal data, discretized indicators, and model complexity. As a result, alternative estimation methods
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such as Weighted Least Squares (WLS) have gained growing attention, especially in simulation-based and
applied SEM research.

Existing studies predominantly focus on comparing ML with other estimators in confirmatory factor
analysis (CFA) or under limited structural conditions, often without explicitly examining the stability of
path coefficient estimation across different model structures and sample sizes. Moreover, empirical
evidence that systematically evaluates estimation accuracy using goodness-of-fit indicators—particularly
RMSEA—across saturated, independence, and hypothesized structural models remains scarce. This gap
indicates that the current state of the art has not fully addressed how estimation methods perform when
model complexity and sample size vary simultaneously.

Therefore, there is an urgent need for a comprehensive simulation-based investigation that not only
compares ML and WLS but also evaluates their robustness and stability across different structural
scenarios. Addressing this need, the present study integrates simulated data generation with repeated
estimation procedures to assess the performance of ML and WLS based on RMSEA behavior. By
positioning RMSEA as a central evaluation metric and examining multiple model scenarios, this research
contributes to the advancement of SEM methodology by providing clearer guidance on the optimal choice

of estimation methods under varying data and model conditions.

Methods

To enhance methodological clarity and provide a clearer overview of the research procedure, this
study adopts a structured simulation-based workflow. The overall methodological process, from data
generation to model evaluation, follows a sequential set of stages illustrated in Figure 1 and described

algorithmically in the following subsections.

Generate Data

Specify SEM Simulated Transformatio Model (Saturated,
DA Independence,
Model Data n (abs — Specification Structural)
(simulateData) _round = +1) Lo
Simulation Parameter
Comparison of RMSEA Replication Estimation
ML vs WLS Computation (100 (ML & WLS)
iterations)
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For completeness, the methodological procedure of this study can be summarized algorithmically

as follows:

(1) Specity the SEM measurement and structural model.

(2) Generate simulated data using the simulateData() function for a given sample size.

(3) Transform the simulated data into positive integer values (range 1-5).

(4) Specify the saturated model, independence model, and hypothesized structural model.

(5) Estimate model parameters using Maximum Likelihood (ML) and Weighted Least Squares (WLS).
(6) Repeat the estimation process for 100 replications.

(7) Compute RMSEA values for each replication and estimation method.

(8) Compare estimation performance based on RMSEA stability and average values.

In this study, the function simulateData() is used to generate simulated data based on a predefined
structural model (Grenneberg et al., 2022). This function allows for the creation of synthetic data that
follows the structure and relationships between latent and observed variables according to the model being
tested (Fonseca & Bacao, 2023). The model includes several latent variables measured by specific
indicators and exhibits clear regression relationships (Van der Loo, 2012). In its implementation,
simulateData() takes two main parameters: the predefined structural model and the sample size
(sample.nobs), which determines the number of observations in the simulated dataset (Finch H., 2024).

After generating the simulated data using simulateData(), further transformation is performed on
the data. The first step in this transformation is to take the absolute value of each element in the simulated
dataset using the abs() function. This step ensures that all values in the dataset are non-negative. Next,
these absolute values are rounded to the nearest integer using the round() function, which converts
continuous values to discrete values more suitable for certain types of analysis. The final step is to add 1
to each element in the rounded dataset to ensure that there are no zero values and all minimum values are
1. This transformation process aims to produce a dataset consisting of positive integer values ranging
from 1 to 5. These steps help avoid issues that may arise from negative or zero values in the analysis and
make the data more suitable for specific types of analysis that require categorical values. Thus, the final
result of this transformation is the dataset simData.n, which is ready for further analysis in this study.

As an example of implementation, a simple SEM model is defined and sample sizes of 500 and
1000 are specified (Rozman et al., 2020). The simulated data is generated using the simulateData()
function and then processed into positive integer values. These steps ensure that the data used in the
analysis is consistent with the predefined model and suitable for the intended analysis. The results of the

transformation are displayed and verified to ensure data integrity before being used for further analysis.
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This implementation example demonstrates how the use of the simulateData() function and data
transformation can provide a synthetic dataset appropriate for research needs.

In the parameter estimation stage, both Maximum Likelihood (ML) and Weighted Least Squares
(WLS) estimation methods are implemented using an iterative numerical optimization procedure.
Specifically, parameter estimation is carried out using the Newton—Raphson algorithm, which updates
parameter values iteratively based on the first and second derivatives of the objective function. At each
iteration, the gradient vector and Hessian matrix are computed to adjust the parameter estimates until
convergence is achieved according to a predefined tolerance criterion. This iterative estimation process is
applied consistently across all simulation replications and scenarios, as illustrated in the methodological
stages presented in Figure 1.

Based on this foundation, the generated data are subsequently applied to three distinct types of
models in order to evaluate model performance and overall fit under varying structural assumptions. In
particular, the analyses are conducted using the saturated model, the independence (null) model, and the
theoretically proposed structural equation model. This comparative framework enables the study to
examine not only the adequacy of the hypothesized model but also its relative performance with respect
to boundary conditions, thereby providing a more rigorous assessment of parameter estimation and model
fit. The generated data will be applied to the following three types of models:

a) Scenario 1

n=500
# Measurement model

L1 =~x1 + x2 + x3

L2 =~y1 + y2 + y3 + y4

L3 =~y5 4+ y6 + y7 + y8

# Regressions

L2~ L1

L3~L1 + L2
Scenario 1 is designed to evaluate the performance of Maximum Likelihood (ML) and Weighted Least
Squares (WLS) estimation methods under a moderate sample size condition (n = 500). This scenario
employs a relatively simple measurement and structural model to examine the stability and accuracy
of path coefficient estimation when data availability is limited. The comparison focuses on how each
estimation method performs in terms of model fit, as measured by RMSEA, across repeated

simulations.
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b) Scenario 2
n=1000
# measurement model
L1 =~x1 + x2 + x3
L2 =~x4 + x5 + x6
L3 =~y1 +y2 + y3 + y4
L4 =~y5 + y6 + y7 + y8
L5 =~2z1 4+ z2 + z3
# regressions
L3~1L1
L4~1L1 + L3
L5~14 + L2
L2~1L1
Scenario 2 investigates the performance of ML and WLS estimation methods under a larger sample
size condition (n = 1000) with an increased number of latent variables and structural relationships.
This scenario is intended to assess whether increasing sample size improves estimation accuracy and
model fit stability, as well as to examine potential differences between ML and WLS when applied
to more complex SEM structures.
¢) Scenario 3
n=1000
# measurement model
L1=~x1+ x2 + x3
L2 =~x4 + x5 + x6
L3 =~y1 +y2 + y3 + y4
L4 =~y5 + y6 + y7 + y8
L5 = ~jsl + js2 + js3
L6 =~wll + wi2 + wi3 + wl4
# regressions
L3~1L1
L4~L1 + L3
L5~L4 + L2
L6 ~L5 + L4
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L2 ~ 11
Scenario 3 further extends the analysis by applying ML and WLS estimation methods to a more
complex structural model using a large sample size (n = 1000). This scenario emphasizes the
robustness of each estimation method under higher model complexity, allowing for a comprehensive
evaluation of their consistency and reliability in estimating path coefficients and achieving optimal
model fit.
To evaluate model fit across estimation methods and simulation replications, this study employs the
Root Mean Square Error of Approximation (RMSEA) as the primary goodness-of-fit index. RMSEA is a
widely used fit measure in Structural Equation Modeling (SEM) that assesses the degree to which a model
approximates the population covariance structure while accounting for model complexity. Unlike absolute
fit indices, RMSEA penalizes overly complex models and provides an assessment of model
misspecification per degree of freedom (Lai & Green, 2016).
Mathematically, RMSEA is computed based on the model chi-square statistic, degrees of freedom,

and sample size, and is expressed as:

x?—df

RMSEA = \/max(m,O) (1)

where y2denotes the chi-square value of the fitted SEM model, dfrepresents the degrees of freedom, and
Nis the sample size. Lower RMSEA values indicate better model fit, with values below 0.05 generally
interpreted as close fit and values between 0.05 and 0.08 indicating acceptable fit.

In the simulation framework of this study, RMSEA is computed at each iteration of the estimation
process. For each replication, the SEM model is estimated using Maximum Likelihood (ML) and
Weighted Least Squares (WLS), after which the corresponding chi-square statistic and degrees of freedom
are obtained. These quantities are then used to calculate the RMSEA value for that iteration. This
procedure is repeated for 100 iterations for each scenario and estimation method. The sequence of RMSEA
values obtained across iterations forms the basis for evaluating estimation performance and stability.
Accordingly, RMSEA values are plotted against the iteration index, where the X-axis represents the
simulation iterations and the Y-axis represents the corresponding RMSEA values. This visualization
allows for a direct comparison of the average RMSEA levels and variability between ML and WLS across

different scenarios.
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Results and Discussion

Structural Equation Modeling (SEM) is a statistical analysis technique that combines factor analysis
and path analysis to model the relationships between latent variables and observed variables. In SEM,
regression coefficients (path coefficients) can be estimated using various methods, including Maximum
Likelihood (ML) and Weighted Least Squares (WLS). The Maximum Likelihood (ML) method aims to

find parameter values that maximize the likelihood (fit) of the observed data.
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To solve this equation, we need a system of equations that connects the model parameters 6 with the data.
In practice, this is done using numerical methods such as the Newton-Raphson method, which is an
iterative technique that uses information from the gradient and Hessian to update parameter estimates. To
apply the Newton-Raphson method, we also need the second derivative of the log-likelihood function with
respect to the parameter 6, known as the Hessian matrix (the matrix of second derivatives of the log-

likelihood function) (Willis et al., 2020):

32£(0)

H(O) = Fga67 3)

For the log-likelihood function in the context of the multivariate normal distribution, the first component
of the Hessian originating from log|Z(0)] is:

02log|=(®)| _ ., (X(6)”1ox()x(6) 1ax(8)
90007 tr( 2006T ) (4)

The second component comes from tr(S%(6)71):

a2tr(sz(e)"1) . (SZ(9)‘162(9)2(9)‘162(0)2(0)‘1)
90007 =t 90067

(5)

Combining these components, we obtain the Hessian of the log-likelihood:

H(G) = —%(—tr (2(6)‘162;4(992329(5)‘162(9)) e (SZ(9)_162(9);;2)9;162(6)2(9)_1)) )

Equations (3)-(6) provide the mathematical foundation required for implementing the Newton-
Raphson optimization method in parameter estimation. These equations define the gradient vector and the
Hessian matrix of the log-likelihood function, which are essential for iteratively updating the parameter
estimates. Based on these formulations, the Newton—Raphson method is applied through the following
procedural steps. Steps of the Newton-Raphson method (Pho, 2022) are as follows:

1. Determine an initial value of the parameter vector, denoted as 8°. This initial estimate may be obtained

from prior information, simplified assumptions, or default starting values provided by the estimation

software.
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2. At the t-th iteration, compute the gradient vector V£(8'), which consists of the first derivatives of the
log-likelihood function, and compute the Hessian matrix H(68%), which contains the second derivatives.
3. Determine the inverse of the Hessian matrix H(0%)™1, which is required to adjust the parameter
estimates.
4. Update the parameter vector using the Newton—Raphson update rule:
ot =9t — H(6Y) "1V e(6Y) (7
where V£(0) denotes the gradient vector of the log-likelihood function.
5. The iterative process continues until convergence is achieved, that is, when the change in parameter
estimates between two successive iterations becomes sufficiently small:
[6(t+1)—0(t)| <e (8)
where € is a pre-set tolerance.

Once convergence is reached, 6 is the parameter estimate that maximizes the log-likelihood
function. The results are evaluated by examining the model fit using RMSEA. Various metrics can be
used to check the fit, but this study uses RMSEA because it is currently one of the most popular measures
of goodness-of-model fit within SEM (Lai & Green, 2016).

Next, the Weighted Least Squares (WLS) method is used to address heteroscedasticity or correlation
among measurement errors. In the context of SEM, to minimize the difference between observed
parameters and those predicted by the model, considering the appropriate weight matrix. The WLS
objective function is expressed as follows:

F(0) = (s —a(0)'W(s —a(6)) %)

Parameter estimation is done by minimizing the WLS objective function:
0 =arg rrbin F(6) (10)

The minimization process involves iterations until we reach the parameter value that minimizes
F(6). This process involves a vector s consisting of observed sample covariances or correlations, which
are the empirical data from the sample, while the model parameter vector o(8) includes predicted
covariances or correlations dependent on parameter 8. The weight matrix W, chosen as the inverse of the
variance-covariance matrix of s, provides efficient estimation in the context of heteroscedasticity:

W =Var(s)™! (11)
The minimization process involves calculating the gradient and Hessian of F(6). The gradient of the
objective function F(0) is the vector of first derivatives of F(8) with respect to 8:

VF(9) = —2W (s — 0(9))% (12)
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The Hessian of the objective function F(8) is the matrix of second derivatives of F(8) with respect to 6:

H(O) = 2 (60(9)) w (%) (13)

Using iterative methods like Newton-Raphson, the parameter update formula is obtained as:
ot =9t — H(6Y)1VF(6Y) (14)

Equation (14) describes the Newton—Raphson update rule for parameter estimation. Here, 6¢ is the
parameter vector at the #th iteration, VF (8! denotes the gradient of the objective function with respect to
the parameter vector, and H(8%)™?! is the inverse of the Hessian matrix of second derivatives of F
evaluated at 6¢. This update iteratively adjusts the parameter estimates by moving in the direction
determined by the inverse Hessian and the gradient until convergence is achieved, leading to the optimal
solution. This study includes three main simulations evaluating the performance of each method under
different data conditions. Each simulation tests the strengths and weaknesses of WLS and ML in providing
accurate and reliable estimates. Results and discussions are detailed for each simulation, showing RMSEA

values for each method over 100 repetitions.
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Figure 2. Comparison of RMSEA Values for the First Scenario

The measurement model used in this study involves three main latent variables (Latent Variables).
Variable L1 is measured using indicators x1, x2, and x3; L2 is measured by indicators y1,y2,y3, and y4;
and L3 is measured by indicators y5, y6,y7, and y8. Regression analysis shows that L2 is predicted by
L1, while L3 is predicted by L1 and L2. Simulation results are shown in a plot depicting RMSEA values
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over 100 iterations. The X-axis indicates the iterations, while the Y -axis shows the RMSEA values. In this
plot, there are two lines representing two different methods or models. The red line (ML) shows RMSEA
fluctuations with an average of 0.0172, while the blue line (WLS) shows different patterns with an average
RMSEA 0f0.0141. The RMSEA fluctuation analysis shows that both methods exhibit RMSEA variation
over iterations, but the blue line tends to have lower and more stable RMSEA values compared to the red
line. The lower average RMSEA value of the blue method (0.0141) indicates better model fit compared
to the red method (0.0172). Therefore, based on these simulation results, the model or method represented
by the blue line (WLS) shows better fit in terms of RMSEA compared to the model represented by the red
line (ML). The overall conclusion of this study is that considering model fit based on RMSEA, the method

represented by the blue line is a more optimal choice for application in this context.
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Figure 3. Comparison of RMSEA Values for the Second Scenario

In the second scenario, the measurement model used in this study defines the relationship between
latent variables (L1, L2, L3, L4, L5) and observed variables:
(x1,x2,x3,x4,x5,x6,y1,y2,y3,y4,y5,y6,y7,y8, 21,22, z3)
Latent variable L1 is associated with x1, x2, and x3; L2 is associated with x4, x5, and x6; L3 is associated

with y1,y2,y3, and y4; L4 is associated with y5,y6,y7, and y8; and L5 is associated with z1, z2, and
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z3. In the tested regression model, latent variable L3 is predicted by L1, L4 is predicted by L1 and L3, L5
is predicted by L4 and L2, and L2 is predicted by L1. These relationships show how these latent variables
influence each other in a complex structural model. The results shown in the graph indicate that both
scenarios have very similar average RMSEA values, with ML slightly higher (0.0096 compared to 0.009
for WLS). However, the graph also shows significant variation in RMSEA values during the looping

process, possibly indicating fluctuations in model performance during iterations.
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Figure 4. Comparison of RMSEA Values for the Third Scenario
In the third scenario, the measurement model used in this study defines the relationship between
latent variables (L1, L2, L3, L4, L5, L6) and observed variables:
(x1,x2,x3,x4,x5,x6,y1,y2,y3,y4,y5,y6,y7,¥8, js1,js2,js3,wll,wi2, wl3, wil4)
Latent variable L1 is measured by indicators x1, x2, and x3; L2 by x4, x5, and x6; L3 by y1,y2,y3, and
v4; L4 by y5,y6,y7, and y8; L5 by js1,js2, and js3; and L6 by wll,wil2,wl3, and wl4. In the tested
regression model, latent variable L3 is predicted by L1, L4 is predicted by L1 and L3, L5 is predicted by
L4 and L2, L6 is predicted by L5 and L4, and L2 is predicted by L1. These relationships illustrate how
these latent variables influence each other in a complex structural model. The results shown in the graph
indicate that both scenarios have relatively low average RMSEA values, with WLS having a slightly lower
average (0.0074) compared to ML (0.0092). The graph also shows significant variation in RMSEA values
during the looping process, possibly indicating fluctuations in model performance during iterations.
The measurement and regression models used to test relationships among latent variables show that

the Weighted Least Squares (WLS) method tends to have lower and more stable RMSE values compared
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to the Maximum Likelihood (ML) method. In scenario 1, WLS has an average RMSEA 0f 0.0141, lower
than ML's average of 0.0172. Scenario 2 shows very similar average RMSE values between the two
methods, with ML slightly higher (0.0096) compared to WLS (0.009). Scenario 3 shows that WLS again
performs better with an average RMSE of 0.0074 compared to ML's 0.0092. Overall, the simulation results
from the three scenarios confirm that the WLS method provides better model fit and is more optimal
compared to ML in the context of the structural models tested.

Based on the three scenarios considering sample size, the Weighted Least Squares (WLS) method
tends to provide better model fit compared to the Maximum Likelihood (ML) method, especially as the
sample size increases. Consider the result study (Beauducel & Herzberg, 2009) and (Schweizer et al.,
2023) WLS better fit results under MLE (maximum likelihood estimation). In all scenarios, WLS
consistently shows lower and more stable average RMSE values compared to ML, indicating that WLS is
a more optimal estimation method for application in the context of the tested structural models, both for

smaller sample sizes (n = 500) and larger ones (n = 1000).

Conclusion

This study compared the Weighted Least Squares (WLS) and Maximum Likelihood (ML) methods
in path analysis using Structural Equation Modeling (SEM). The goal was to evaluate the effectiveness of
both methods under different data conditions through threemain simulations. The first simulation results
showed that the WLS method had an average RMSEA of 0.0141, lower than ML's average of 0.0172,
indicating that WLS provided better model fit compared to ML with a sample size of 500. In the second
simulation, although both methods showed very similar average RMSEA values (0.009 for WLS and
0.0096 for ML), WLS was still superior with lower fluctuation and slightly lower average RMSEA
compared to ML. This simulation was conducted with a larger sample size of 1000, showing that WLS
still maintained better performance compared to ML. The third simulation again showed that WLS had a
lower average RMSEA (0.0074) compared to ML (0.0092). This simulation, also with a sample size of
1000, demonstrated the stability and superiority of WLS in providing better model fit. Overall, the results
from the three scenarios confirm that the WLS method is superior in providing accurate and reliable
parameter estimates in SEM analysis. The WLS method consistently shows lower and more stable average
RMSEA values compared to ML, both for smaller and larger sample sizes. Therefore, WLS is a more
optimal estimation method for application in the context of the structural models tested in this study.
Future studies may extend this work by comparing WLS and ML with other SEM estimation methods,
such as robust or Bayesian approaches, under different data distribution conditions and higher model

complexity. Additionally, incorporating alternative goodness-of-fit indices alongside RMSEA and
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applying the proposed framework to empirical datasets may further enhance the generalizability of the

findings.
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