SINTESIS ZnO BERSTRUKTUR NANO MENGGUNAKAN CAMPURAN PELARUT AIR-ETILEN GLIKOL DAN KARAKTERISASI STRUKTUR, MORFOLOGI DAN ENERGI CELAH PITA PARTIKEL

Authors

  • Cindy Claudia Christanti Program Studi Kimia, Universitas Timor
  • Didi Prasetyo Benu Program Studi Kimia, Fakultas Pertanian, Sains dan Kesehatan, Universitas Timor, Kefamenanu 85614, Indonesia

DOI:

https://doi.org/10.32938/jcsa.v2i2.8757

Keywords:

Capping agent, Etilen glikol, Karakteristik ZnO, Sintesis ZnO, ZnO berstruktur nano

Abstract

Seng oksida (ZnO) adalah salah satu material semikonduktor yang banyak diaplikasikan dalam berbagai bidang, salah satunya adalah sebagai fotokatalis. Karakteristik penting untuk menunjang aplikasi ZnO sebagai fotokatalis adalah luas permukaan dan densitas cacat kristal. Penelitian ini bertujuan untuk meningkatkan potensinya sebagai fotokatalis dengan cara mengontrol morfologi dan densitas cacat kristal melalui sintesis menggunakan campuran pelarut air-etilen glikol.  Struktur partikel hasil sintesis dikarakterisasi menggunakan difraksi sinar x (XRD), morfologinya diamati menggunakan Field Emission Scanning Electron Microscope (FESEM), dan energi celah pita partikel ditentukan menggunakan persamaan Kubelka-Munk berdasarkan spektrum absorpsi yang diukur manggunakan UV-Vis Diffuse Reflectance Spectroscopy (DRS). Hasil penelitian menunjukkan bahwa ZnO berstuktur kristal wurtzite dengan morfologi tiga dimensi berstruktur nano berhasil disintesis menggunakan campuran pelarut air-etilen glikol dengan keberadaan urea sebagai agen penghidrolisis. Etilen glikol berperan sebagai capping agent yang teradsorpsi ke permukaan kristal ZnO, sehingga mengarahkan petumbuhan kristal anisotropik dan menghasilkan ZnO berstruktur nano. Meskipun ZnO hasil sintesis memiliki energi celah pita lebar (3,16 eV), keberadaan cacat kristal dapat meningkatkan performanya dalam berbagai aplikasi jika dibandingkan dengan ZnO konvensional. Karakteristik material yang dihasilkan menunjukkan bahwa partikel ZnO hasil sintesis berpotensi memiliki kinerja unggul dalam aplikasinya sebagai fotokatalis.

References

(1) Panigrahi, S.; Sarkar, S.; Basak, D. Metal-Free Doping Process to Enhance the Conductivity of Zinc Oxide Nanorods Retaining the Transparency. ACS Appl. Mater. Interfaces 2012, 4 (5), 2709–2716. https://doi.org/10.1021/am300348g.

(2) Xu, X.; Chen, Y.; Zhang, G.; Bian, H.; Zhao, M.; Ma, S. Optical Properties and the Band-Gap Variation in Diverse Zn1-xSnxO Nanostructures. Superlattices Microstruct. 2018, 123, 349–357. https://doi.org/10.1016/j.spmi.2018.09.021.

(3) Adeel, M.; Saeed, M.; Khan, I.; Muneer, M.; Akram, N. Synthesis and Characterization of Co–ZnO and Evaluation of Its Photocatalytic Activity for Photodegradation of Methyl Orange. ACS Omega 2021, 6 (2), 1426–1435. https://doi.org/10.1021/acsomega.0c05092.

(4) Septiani, N. L. W.; Saputro, A. G.; Kaneti, Y. V.; Maulana, A. L.; Fathurrahman, F.; Lim, H.; Yuliarto, B.; Nugraha; Dipojono, H. K.; Golberg, D.; Yamauchi, Y. Hollow Zinc Oxide Microsphere–Multiwalled Carbon Nanotube Composites for Selective Detection of Sulfur Dioxide. ACS Appl. Nano Mater. 2020, 3 (9), 8982–8996. https://doi.org/10.1021/acsanm.0c01707.

(5) Sharma, V.; Kumar, A.; Kumar, A.; Krishnan, V. Enhanced Photocatalytic Activity of Two Dimensional Ternary Nanocomposites of ZnO–Bi2WO6–Ti3C2 MXene under Natural Sunlight Irradiation. Chemosphere 2022, 287, 132119. https://doi.org/10.1016/j.chemosphere.2021.132119.

(6) Benu, D. P.; Andriani, A.; Silmi, N.; Steky, F. V.; Failamani, F.; Yuliarto, B.; Mukti, R. R.; Suendo, V. Macroemulsion-Mediated Synthesis of Fibrous ZnO Microrods and Their Surface Morphology Contribution to the High Photocatalytic Degradation Rate. New J. Chem. 2023, 47 (1), 428–442. https://doi.org/10.1039/D2NJ04862K.

(7) Andriani, A.; Benu, D. P.; Megantari, V.; Yuliarto, B.; Mukti, R. R.; Ide, Y.; Chowdhury, S.; Amin, M. A.; Kaneti, Y. V.; Suendo, V. Role of Urea on the Structural, Textural, and Optical Properties of Macroemulsion-Assisted Synthesized Holey ZnO Nanosheets for Photocatalytic Applications. New J. Chem. 2022, 46 (20), 9897–9908. https://doi.org/10.1039/D2NJ00184E.

(8) Chen, W.; Liu, Q.; Tian, S.; Zhao, X. Exposed Facet Dependent Stability of ZnO Micro/Nano Crystals as a Photocatalyst. Appl. Surf. Sci. 2019, 470, 807–816. https://doi.org/10.1016/j.apsusc.2018.11.206.

(9) Jeong, H. W.; Choi, S.-Y.; Hong, S. H.; Lim, S. K.; Han, D. S.; Abdel-Wahab, A.; Park, H. Shape-Dependent Charge Transfers in Crystalline ZnO Photocatalysts: Rods versus Plates. J. Phys. Chem. C 2014, 118 (37), 21331–21338. https://doi.org/10.1021/jp506032f.

(10) Nanev, C. N. Thermodynamic and Molecular-Kinetic Considerations of the Initial Growth of Newly Born Crystals; Crystal Size Distribution; Dissolution of Small Crystals during Ostwald Ripening Due to Temperature Changes. Prog. Cryst. Growth Charact. Mater. 2023, 69 (2), 100604. https://doi.org/10.1016/j.pcrysgrow.2023.100604.

(11) Sahu, K.; Kar, A. K. Counterion-Induced Tailoring of Energy Transfer in Hydrothermally Grown Nanostructured ZnO for Photocatalysis. Cryst. Growth Des. 2021, 21 (7), 3656–3667. https://doi.org/10.1021/acs.cgd.0c01202.

(12) Liu, Y.; Liu, H.; Zhang, Q.; Li, T. Adjusting the Proportions of {0001} Facets and High-Index Facets of ZnO Hexagonal Prisms and Their Photocatalytic Activity. RSC Adv. 2017, 7 (6), 3515–3520. https://doi.org/10.1039/C6RA24912D.

(13) Hussain, S.; Liu, T.; Kashif, M.; Cao, S.; Zeng, W.; Xu, S.; Naseer, K.; Hashim, U. A Simple Preparation of ZnO Nanocones and Exposure to Formaldehyde. Mater. Lett. 2014, 128, 35–38. https://doi.org/10.1016/j.matlet.2014.04.115.

(14) Chetia, T. R.; Ansari, M. S.; Qureshi, M. Ethyl Cellulose and Cetrimonium Bromide Assisted Synthesis of Mesoporous, Hexagon Shaped ZnO Nanodisks with Exposed ±{0001} Polar Facets for Enhanced Photovoltaic Performance in Quantum Dot Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2015, 7 (24), 13266–13279. https://doi.org/10.1021/acsami.5b01039.

(15) Septiani, N. L. W.; Yuliarto, B.; Iqbal, M.; Nugraha. Synthesis of Zinc Oxide Nanoparticles Using Anthocyanin as a Capping Agent. IOP Conf. Ser. Mater. Sci. Eng. 2017, 202, 012070. https://doi.org/10.1088/1757-899X/202/1/012070.

(16) Ashoka, S.; Nagaraju, G.; Tharamani, C. N.; Chandrappa, G. T. Ethylene Glycol Assisted Hydrothermal Synthesis of Flower like ZnO Architectures. Mater. Lett. 2009, 63 (11), 873–876. https://doi.org/10.1016/j.matlet.2009.01.054.

(17) Makuła, P.; Pacia, M.; Macyk, W. How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra. J. Phys. Chem. Lett. 2018, 9 (23), 6814–6817. https://doi.org/10.1021/acs.jpclett.8b02892.

(18) Akhil, K.; Jayakumar, J.; Gayathri, G.; Khan, S. S. Effect of Various Capping Agents on Photocatalytic, Antibacterial and Antibiofilm Activities of ZnO Nanoparticles. J. Photochem. Photobiol. B 2016, 160, 32–42. https://doi.org/10.1016/j.jphotobiol.2016.03.015.

(19) Schreyer, M.; Guo, L.; Thirunahari, S.; Gao, F.; Garland, M. Simultaneous Determination of Several Crystal Structures from Powder Mixtures: The Combination of Powder X-Ray Diffraction, Band-Target Entropy Minimization and Rietveld Methods. J. Appl. Crystallogr. 2014, 47 (2), 659–667. https://doi.org/10.1107/S1600576714003379.

(20) Talam, S.; Karumuri, S. R.; Gunnam, N. Synthesis, Characterization, and Spectroscopic Properties of ZnO Nanoparticles. Int. Sch. Res. Not. 2012, 2012 (1), 372505. https://doi.org/10.5402/2012/372505.

(21) Imangholi, B.; Hasselbeck, M. P.; Sheik-Bahae, M. Absorption Spectra of Wide-Gap Semiconductors in Their Transparency Region. Opt. Commun. 2003, 227 (4), 337–341. https://doi.org/10.1016/j.optcom.2003.09.044.

Downloads

Published

2025-01-15

How to Cite

Christanti, C. C., & Benu, D. P. (2025). SINTESIS ZnO BERSTRUKTUR NANO MENGGUNAKAN CAMPURAN PELARUT AIR-ETILEN GLIKOL DAN KARAKTERISASI STRUKTUR, MORFOLOGI DAN ENERGI CELAH PITA PARTIKEL. Journal of Chemical Science and Application, 2(2), 27–30. https://doi.org/10.32938/jcsa.v2i2.8757

Issue

Section

Articles