Masalah Aliran Maksimum dalam Sebaran Jaringan Rute Trans Jogja dari Halte Rumah Sakit Bathesda ke Halte Malioboro 1

Authors

  • Deddy Rahmadi Universitas Islam Negeri Sunan Kalijaga Yogyakarta
  • Hakim Adidarma Universitas Islam Negeri Sunan Kalijaga
  • Erika Putri Universitas Islam Negeri Sunan Kalijaga
  • Ni'ma Ajrul Amilin Universitas Islam Negeri Sunan Kalijaga
  • Dela Nuraini Safinka Universitas Islam Negeri Sunan Kalijaga

DOI:

https://doi.org/10.32938/j-math.v3i2.8862

Keywords:

maximum flow, Graph Theory, trans jogja route, transportation network

Abstract

Yogyakarta is one of the cities with a fairly high level of transportation use. Transportation itself is one of the most important things in daily life. This study was conducted to identify the maximum flow based on graphs from the available data with several important stages in its completion. The research data used was in the form of the number of currents and capacities of the distribution of the trans Jogja network which had a route where the starting point was at the Bathesda hospital stop and the end point was located at the Malioboro one bus stop .

References

Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network Flows: Theory, Algorithms, and Applications. Prentice Hall.

Albar, W., Rahmadi, D., & Dewi, K. (2023). The Implementation of Minimum Spanning Tree in Finding Algebraically the Shortest Path of National-Exam-Sheet Distribution in All Senior High Schools over Bantul Regency. Basis : Jurnal Ilmiah Matematika, 2(1), 78-82. doi:10.30872/basis.v2i1.1111

Buhaerah, Busrah, Z., & Sanjaya, H. (2019). Teori Graf dan Aplikasinya. In Living Spiritual Quotient.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to Algorithms (3rd ed.). MIT Press.

Fakultas dan Program Studi Universitas Gadjah Mada. "Sejarah Universitas Gadjah Mada." Diakses pada 2023.

Farizal, T., & Suyitno, H. (2014). Unnes Journal of Mathematics PENCARIAN ALIRAN MAKSIMUM DENGAN ALGORITMA FORD-FULKERSON (Studi Kasus pada Jaringan Listrik Kota Tegal). Ujm, 3(1). http://journal.unnes.ac.id/sju/index.php/ujm

Kleinberg, J., & Tardos, É. (2005). Algorithm Design. Pearson.

Poespowardojo, Soedjatmoko. Ki Hadjar Dewantara dan Pemikiran Pendidikan Nasional. Jakarta: Balai Pustaka, 1999

Rahayuningsih, S. (2018). Teori Graph dan Penerapannya. Program Studi Pendidikan Matematika IKIP Budi Utomo Malang, 1–151. https://srirahayuningsih82.wordpress.com/wp-content/uploads/2019/02/buku-ajar-teori-graph.pdf

Rahmadi, D., & Herdianti, R. (2024). Penerapan Minimum Spanning Tree dalam Menentukan Rute Terpendek pada Wisata di Kota Wonogiri. Basis : Jurnal Ilmiah Matematika, 3(2), 31-39. doi:10.30872/basis.v3i2.1390

Rahmadi, D., Ramadhani, I. N., Dheana, C. E., & Mustamin, M. A. (2024). Modeling Network Problem using Metric Dimension: Applied Algorithm on Corona Graph. Mathematical Journal of Modelling and Forecasting, 2(1), 20–26. https://doi.org/10.24036/mjmf.v2i1.21

Rahmadi, D., Maharani, N. P., Syifa, M. R., Sama, S. A., & Ardiansyah, G. F. (2024). Optimasi Pemasangan Kabel Internet Antar Daerah Kabupaten Sleman Menggunakan Minimum Spanning Tree. Journal of Mathematics Theory and Applications, 2(2), 24–33. https://doi.org/10.32938/j-math22202424 - 33

Rahmadi, D. (2024). MIXED METRIC DIMENSION OF DOUBLE FAN GRAPH. Jurnal Diferensial, 6(1), 52-56. https://doi.org/10.35508/jd.v6i1.12526

Rahmadi, D. (2023). On Finding Shortest Path Over Vocational High School in Yogyakarta Based on Graph Theory Algorithm. Mathematical Journal of Modelling and Forecasting, 1(2), 10–14. https://doi.org/10.24036/mjmf.v1i2.14

Rahmadi, D., & Sandariria, H. (2023). Penerapan Minimum Spanning Tree dalam Menentukan Rute Terpendek Distribusi Naskah Soal USBN di SMA Negeri se- Sleman. Basis : Jurnal Ilmiah Matematika, 2(1), 66-71. doi:10.30872/basis.v2i1.1084

Sudibyo, N. A., Setyawan, P. E., & Hidayat, Y. P. S. R. (2020). Implementasi Algoritma Dijkstra Dalam Pencarian Rute Terpendek Tempat Wisata Di Kabupaten Klaten. Riemann: Research of Mathematics and Mathematics Education, 2(1), 1–9.

Sudibyo, N. A., Purwanto, T., & Rahmadi, D. (2020). Minimum Spanning Tree Pada Distribusi Bahan Naskah USBN SD/MI Di Kabupaten Sragen. Riemann: Research of Mathematics and Mathematics Education, 2(2), 64-69.

Schrijver, A. (2008). Flows in railway optimization. Nieuw Archief Voor Wiskunde, 2, 126–131. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.160.5445&rep=rep1&type=pdf

Subkhi Mahmasani. (2020). View metadata, citation and similar papers at core.ac.uk. 274–282.

Sutrisni, N., Rosyida, I., & Asih, T. S. N. (2019). Implementasi Algoritma Edmonds Karp Dalam Pencarian Aliran Maksimum Pada Jaringan Listrik. Jurnal Ilmiah Matematika, 6(1), 1. https://doi.org/10.26555/konvergensi.v6i1.19543

Sedgewick, R., & Wayne, K. (2011). Algorithms (4th ed.). Addison-Wesley.

Skiena, S. S. (2008). The Algorithm Design Manual (2nd ed.). Springer.

Downloads

Published

2025-04-30

How to Cite

Rahmadi, D., Adidarma, H., Putri, E., Amilin, N. A., & Safinka, D. N. (2025). Masalah Aliran Maksimum dalam Sebaran Jaringan Rute Trans Jogja dari Halte Rumah Sakit Bathesda ke Halte Malioboro 1. Journal of Mathematics Theory and Applications, 3(2), 19–29. https://doi.org/10.32938/j-math.v3i2.8862