Aplikasi Teorema Polya dalam Menentukan Banyaknya Cara Pewarnaan Permukaan Oktahedron dengan m-Warna
DOI:
https://doi.org/10.32938/j-math.v3i2.9456Keywords:
Teorema Polya, Oktahedron, Grup Permutasi, Grup Simetri RotasiAbstract
One application of the permutation group concept is related to solving enumeration problems and one method that can solve this problem is Polya's Theorem. Polya's theorem is a calculation technique that combines abstract algebraic structures with combinatorics and can be used to calculate objects in permutation groups. A regular octahedron is an octahedron composed of eight equilateral triangles and the four sides of the octahedron meet at each vertex and have twelve edges. In 2015, research was carried out on the many ways to color the surface of a cube with m-colors. This research aims to determine the number of ways to color the surface of an octahedron with m-colors by using the Polya theorem and permutation groups to determine the rotational symmetry group formed by the octahedron as well as the number of cycle indices formed from each element in the rotational symmetry group itself. Based on the research results, it is obtained that the rotational symmetry group formed by the octahedron is S_4 and the number of cycle indices of the octahedron permutation group is Z(G) = 1/24*(x_1^8+6x_4^2+9x_2^4+8x_1^2*x_3^2) . After substituting the symmetry index and cycle index into the Polya theorem formula, we can conclude that the number of ways to color the octahedron surface with m-colors is 1/24*(m^8+17m^4+6m^2).
References
Kleiner, I. (1986). The evolution of group theory: A brief survey. Mathematics Magazine, 59(4), 195–215.
Ray, & Steven. (2022). Pengolahan citra digital pada pembuatan motif keramik menggunakan grup simetri [Online]. Universitas Kristen Satya Wacana Repository. https://repository.uksw.edu/handle/123456789/24356
Rosalianti, V. T., Suhery, C., & Kusumastuti, N. (2013). Penggunaan teorema Polya dalam menentukan banyaknya graf sederhana yang tidak saling isomorfis. Buletin Ilmiah Matematika, Statistika dan Terapannya (BIMASTER), 2, 39–44.
Badar, M., & Iqbal, A. (2010). Polya’s enumeration theorem. Linneaus University.
Baker, J., & Kudrolli, A. (2010). Maximum and minimum stable random packings of Platonic solids. American Physical Society, 82(6): 1-5.
von Bell, M. (2015). Polya’s enumeration theorem and its applications. University of Helsinki Open Repository.
Dummit, D. S., & Foote, R. M. (2004). Abstract algebra (3rd ed.). John Wiley & Sons.
Durbin, J. R. (2005). Modern algebra: An introduction (6th ed.). Laurie Rosatone.
Herstein, I. N. (1996). Abstract algebra (3rd ed.). John Wiley & Sons.
Fraleigh, J. B., & Katz, V. J. (2003). A first course in abstract algebra. Pearson Education.
Gallian, J. A. (2010). Contemporary abstract algebra (7th ed.). Brooks-Cole/Cengage Learning.
Downloads
Published
How to Cite
Issue
Section
License
Pemberitahuan Hak Cipta Penulis yang menerbitkan naskah pada jurnal ini, menyetujui persyaratan berikut:
- Penulis mempertahankan hak cipta dan memberikan jurnal hak publikasi pertama dengan karya yang secara bersamaan dilisensikan di bawah Creative Commons Attribution License yang memungkinkan orang lain untuk berbagi dengan pengakuan kepenulisan karya dan publikasi awal dalam jurnal ini.
- Aspek formal legal aksesibilitas publikasi jurnal mengacu pada Creative Commons Attribution 4.0 (CC-BY 4.0). Anda bebas untuk berbagi—menyalin dan mendistribusikan ulang materi dalam media atau format apa pun—meracik ulang, mengubah, dan membangun materi untuk tujuan apa pun, bahkan secara komersial.
- Setiap publikasi (cetak/elektronik) bersifat open access untuk kepentingan pendidikan, penelitian, dan perpustakaan. Selain tujuan yang disebutkan di atas, dewan redaksi tidak bertanggung jawab atas pelanggaran hak cipta. Karya ini dilisensikan di bawah Creative Commons Attribution 4.0 (CC-BY 4.0)