Prediksi Harga Bitcoin Menggunakan Metode ARIMA

Main Article Content

Ebenhasier Liunokas
Kresentius Iku Kobesi
Cecilia Novianti Salsinha

Abstract

This study aims to predict bitcoin prices using the time series method. One of the time series methods used is the ARIMA model. The data used is secondary data obtained from the site https://finance.yahoo.com in the form of monthly closing price data. Monthly closing price data starting from August 2017 to July 2022 totaling 60 data. The data obtained is used to predict bitcoin prices for the next 10 months, namely August 2022 to May 2023. The results show that the ARIMA(0,2,2) model is the best model chosen. The prediction results using the ARIMA model (0,2,2) for August 2022 to May 2023 are 25,674.46; 26018.57; 26,362.68; 26,706.79; 27050.90; 27,395.01; 27,739.13; 28083.24; 28,427.35 and 28,771.46. The results of this prediction show that the price of bitcoin will increase and the difference between the actual price and the predicted results is not much different from the actual data on the price of bitcoin.

Article Details

How to Cite
Liunokas, E., Kobesi, K. I., & Salsinha, C. N. (2024). Prediksi Harga Bitcoin Menggunakan Metode ARIMA. Journal of Mathematics Theory and Applications, 2(2), 43–52. https://doi.org/10.32938/j-math22202443 - 52
Section
Articles

References

Adam, I. O., & Dzang Alhassan, M. (2020). Bridging the global digital divide through digital inclusion: the role of ICT access and ICT use. Transforming Government: People, Process and Policy, 15(4), 580–596. https://doi.org/10.1108/TG-06-2020-0114

Aisyah Ayu Musyafah. (2020). Transaksi Bitcoin dalam Perspektif Islam dan Hukum Positif Indonesia. Diponegoro Private Law Review, 7(1), 700–712.

Ausop, A. Z., & Aulia, E. S. N. (2018). Teknologi Cryptocurrency Bitcoin Untuk Investasi Dan Transaksi Bisnis Menurut Syariat Islam. Jurnal Sosioteknologi, 17(1), 74–92. https://doi.org/10.5614/sostek.itbj.2018.17.1.8

Djoni, H. (2011). Penerapan Model ARIMA untuk Memprediksi Harga Saham PT. Telkom Tbk. Jurnal Ilmiah Sains, 11(1), 116–123.

Fitriyani, N. (2020). Analisis Dampak Perkembangan Mata Uang Digital Bitcoin Dalam Perekonomian. Jurnal Ekonomi & Perbankan Syariah, 145. https://ejournal.unmuha.ac.id/index.php/ekispersya/article/view/1034%0Ahttps://ejournal.unmuha.ac.id/index.php/ekispersya/article/viewFile/1034/498

Larasati, K. D. (2020). Prediksi Harga Bitcoin Berdasarkan Informasi.

Makridakis, S., Wheelwright C, S., & McGee, V. E. (1999). Metode dan Aplikasi Peramalan. Binarupa Aksara, 112.

Nurdiansyah, A., Furqon, M. T., & Rahayudi, B. (2019). Prediksi Harga Bitcoin Menggunakan Metode Extreme Learning Machine (ELM) dengan Optimasi Artificial Bee Colony (ABC). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 3(6), 5531–5539. http://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/5507

Pradana, N. F. B., & Lestanti, S. (2020). Aplikasi Prediksi Jangka Pendek Harga Bitcoin Menggunakan Metode Arima. Jurnal Ilmiah Informatika Komputer, 25(3), 160–174. https://doi.org/10.35760/ik.2020.v25i3.3128

Rinaldi, A., Si, S., Si, M., Dewi, N. R., Si, M., Tarbiyah, F., & Keguruan, D. A. N. (2021). DI KABUPATEN LAMPUNG TENGAH Skripsi Diajukan Guna Melengkapi Tugas-Tugas Dan Memenuhi Syarat-Syarat Guna Memperoleh Gelar Sarjana Pendidikan ( S . Pd ) Dalam Ilmu Pendidikan Matematika Oleh : DEWI ANJANI Program Studi : Pendidikan Matematika Pembimbing I .

Sari, S. W. (2016). Perkembangan Dan Pemikiran Uang Dari Masa Ke Masa. An-Nisbah: Jurnal Ekonomi Syariah, 3(1). https://doi.org/10.21274/an.2016.3.1.39-58

Yudi. (2018). Peramalan Penjualan Mesin Industri Rumah Tangga Dengan Metode Fuzzy Time Series Ruey Chyn Tsaur. Jurnal Informatika Kaputama(JIK), 2(1), 53–59.

Zhou, Yang, & Wang. (2020). No 主観的健康感を中心とした在宅高齢者における 健康関連指標に関する共分散構造分析Title. File:///C:/Users/VERA/Downloads/ASKEP_AGREGAT_ANAK_and_REMAJA_PRINT.Docx, 21(1), 1–9.