Exploring the Thinking Experiences of Preservice Mathematics Teachers in Learning Geometric Transformation Proofs
DOI:
https://doi.org/10.32938/jpm.v7i1.9662Keywords:
contextualization, decontextualization, depersonalization, geometric transformation, personalizationAbstract
This study aimed to explore the thinking experiences of preservice mathematics teachers in learning geometric transformation proofs, focusing on four categories of thinking: personalization, contextualization, depersonalization, and decontextualization. Employing a qualitative approach with a phenomenological design, the study involved 24 preservice mathematics teachers in a mathematics education program who had completed a course on Geometric Transformations. Data were collected through written test tasks and in-depth interviews and analyzed thematically. The data analysis followed a four-stage phenomenological procedure: bracketing, to suspend researcher assumptions; intuiting, to immerse in participants’ experiences; thematizing, to identify recurring patterns; and describing, to construct a comprehensive understanding of the phenomenon. The findings identified seven key themes that reflect the thinking experiences of preservice mathematics teachers. Through an in-depth analysis of these themes, it was revealed that the participants’ reasoning predominantly remained at the stages of personalization and contextualization. Depersonalized and decontextualized thinking was not identified, suggesting that the transition toward formal and abstract mathematical reasoning had not yet occurred. The findings suggest possible cognitive obstacles experienced by preservice teachers in transitioning toward formal reasoning, based on interview responses. However, the exploration of these challenges was limited to data gathered through interviews. Future studies are recommended to conduct deeper investigations through classroom observations and analysis of instructional materials to better understand how these thinking difficulties emerge.
References
Anwar, L., Mali, A., & Goedhart, M. J. (2021). The Effect of Proof Format on Reading Comprehension of Geometry Proof: The Case of Indonesian Prospective Mathematics Teachers. Eurasia Journal of Mathematics, Science and Technology Education, 17(4), 1–15. https://doi.org/10.29333/EJMSTE/10782
Aulia E, I. R., Azizah, D., & Hoiriyah, D. (2023). Analysis of Student Difficulty in Solving Geometry Transformation Problems at UIN Syekh Ali Hasan Ahmad Addary Padangsidimpuan. Logaritma : Jurnal Ilmu-Ilmu Pendidikan Dan Sains, 11(02), 271–278. https://doi.org/10.24952/logaritma.v11i02.10292
Greening, N. (2019). Phenomenological Research Methodology. Scientific Research Journal, VII(V), 88–92. https://doi.org/10.31364/SCIRJ/v7.i5.2019.P0519656
Houston, K. (2009). How to think like a mathematician: A companion to undergraduate mathematics. Cambridge University Press.
Indahwati, R. (2023). Student ’s difficulties in transformation geometry course viewed from visualizer verbalizer cognitive style. SIGMA, 9.
Kang, W., & Kilpatrick, J. (1992). Didactic transposition in mathematics textbooks. For the Learning of Mathematics, 12(1), 2–7.
Kusuma, A. B., & Setyaningsih, E. (2015). Peningkatan Kemampuan Representasi Matematis Mahasiswa Menggunakan Media Program Geogebra pada Mata Kuliah Geometri Transformasi. Khazanah Pendidikan, VIII(2), 1–15.
Lerman, S. (2020). Enclyclopedia of Mathematics Education. In Journal of Research in Mathematics Education (Vol. 4, Issue 3). https://doi.org/10.17583/redimat.2015.1786
Maifa, T. S. (2019). Analisis Kesalahan Mahasiswa dalam Pembuktian Transformasi Geometri. Jurnal Riset Pendidikan Dan Inovasi Pembelajaran Matematika (JRPIPM), 3(1), 8. https://doi.org/10.26740/jrpipm.v3n1.p8-14
Napfiah, S., & Sulistyorini, Y. (2021). Errors Analysis in Understanding Transformation Geometry Through Concept Mapping. International Journal of Research in Education, 1(1), 6–15. https://doi.org/10.26877/ijre.v1i1.5863
Noto, M. S., Priatna, N., & Dahlan, J. A. (2019). Mathematical proof: The learning obstacles of pre-service mathematics teachers on transformation geometry. Journal on Mathematics Education, 10(1), 117–125. https://doi.org/10.22342/jme.10.1.5379.117-126
Sundawan, M. D., Dewi, L. K. D., & Noto, M. S. (2018). Kajian Kesulitan Belajar Mahasiswa dalam Kemampuan Pembuktian Matematis Ditinjau dari Aspek Epistemologi pada Mata Kuliah Geometri Transformasi. Inspiramatika, 4(1), 13–26. http://e-jurnal.unisda.ac.id/index.php/Inspiramatika/article/view/868
Suryadi, D. (2013). Didactical design research (DDR) dalam pengembangan pembelajaran matematika. Prosiding Seminar Nasional Matematika Dan Pendidikan Matematika, 1(1), 3–12.
Suryadi, D. (2019). Pengetahuan transposisi sebagai konektor pendidikan akademik dan pendidikan profesi guru (PPG) matematika. Disampaikan Di Lingkungan Departemen Pendidikan Matematika Kamis, 15 Agustus 2019, 1–23.
Suwardy, M. P., Suryadi, D., & Rosjanuardi, R. (n.d.). MATEMATIS NON RUTIN PADA TOPIK TEOREMA PYTHAGORAS ( STUDI TRANSPOSISIONAL ) NON ROUTINE MATHEMATICAL PROBLEM SOLVING ON THE TOPIC OF PYTHAGORAS ’ S THEOREM ( STUDY OF TRANSPOSITIONAL ). 1–16.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 RANGE: Jurnal Pendidikan Matematika

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
RANGE: Jurnal Pendidikan Matematika


