Extensions of Schauder’s Fixed Point Theorem for Lipschitz Operators under Weakened Compactness Conditions
DOI:
https://doi.org/10.32938/jpm.v7i1.9696Keywords:
Fixed Point, Schauder, Lipschitz, Compact, convexAbstract
This is a literature review focusing on the existence of fixed-point in Banach Space. This research aims to investigate the existence of fixed-point in Banach Space by examining the Schauder Fixed-Point Theorem and its extensions. This research began with a review of fundamental concepts such as metric space, compactness, convexity, and operator in Banach Space, the research proceeds to analyse the proof of the Schauder Fixed Point Theorem, which asserts that every continuous mapping on a compact and convex subset of Banach Space has a fixed point. This research further extends this result by examining cases where it is not the operator itself but the image of the operator that is compact yet still guarantees the existence of a fixed point. These findings broaden the applicability of Schauder Fixed-Point Theorem and suggest potential for its use in mathematical problems involving nonlinear-operators in infinite-dimensional spaces.
References
Abdulkarim, E. (2025). A study of a basic sufficient condition for the compactness of linear operators on Banach space. Sebha University Journal Of Pure & Applied Sciences, 24(1). https://doi.org/10.51984/JOPAS.V24I1.3690
Alzate, C. P. P., Sanchez, T. F., & Munoz, A. A. C. (2023). Topology of Metric space : A look through Geogebra. Journal of Southwest Jiaotong University, 58.
Ben-El-Mechaieh, H., & Mechaiekh, A. Y. (2022). An elementary proof of the Brouwer’s fixed point theorem. Arabian Journal of Mathematics, 11(2), 179–188. https://doi.org/10.1007/s40065-022-00366-0
Fernandez, A. J., & Fernandez, M. (2022). Teorema titik tetap menjamin eksistensi masalah nilai awal. Saintika: Jurnal Sains Dan Matematika, 4(2), 147–162. https://doi.org/10.32493/jsmu.v4i2.10749
Figueroa, R., & Infante, G. (2016). A Schauder-type theorem for discontinuous operators with applications to second-order BVPs. Fixed Point Theory and Applications, 2016(1), 57. https://doi.org/10.1186/s13663-016-0547-y
Hao, Z., Bohner, M., & Wang, J. (2019). Extensions of Schauder’s and Darbo’s Fixed Point Theorems. Infor Math Publishing Group, 19(3), 396–404.
Isabu, H. A., & Ojiema, M. O. (2024). On some aspects of compactness in Metric spaces. African Scientific Annual Review, 1(1), 18–27. https://doi.org/10.51867/asarev.maths.1.1.2
Kamalov, F., & Leung, H. H. (2023). Fixed point theory: A review. 1–22. https://doi.org/10.48550/arXiv.2309.03226
Kashuri, A., Agarwal, R. P., Mohammed, P. O., Nonlaopon, K., Abualnaja, K. M., & Hamed, Y. S. (2022). New generalized class of convex functions and some related integral inequalities. Symmetry, 14(4), 722. https://doi.org/10.3390/sym14040722
Kaya, U. (2018). Some theorems on compactness and completeness. BEU Journal of Science, 7(1), 119–124. https://doi.org/10.17798/bitlisfen.416698
Kusumaningati, A. D., & Jakfar, M. (2023). Properties of compact set in G-Metric Space. International Journal of Research in Engineering, Science and Management, 6(9), 1–8. https://journal.ijresm.com/index.php/ijresm/article/view/2806
Laha, A. K., & Saha, M. (2016). Fixed points of α − ψ multivalued contractive mappings in cone metric spaces. Acta et Commentationes Universitatis Tartuensis de Mathematica, 20(1), 35–43. http://acutm.math.ut.ee
Melo, C. A. H. (2017). Delta-epsilon functions and uniform continuity on metric spaces. 55, 1–10. https://doi.org/10.48550/arXiv.1710.04070
Mykhaylyuk, V., & Myronyk, V. (2020). Compactness and completeness in partial metric spaces. Topology and Its Applications, 270. https://doi.org/10.1016/j.topol.2019.106925
Nakasho, K., Narita, K.,& Shidama, Y. (2016). Compactness in Metric Spaces. FORMA (Formalized Mathematics M(3), M(3), 167–172. https://doi.org/10.1515/forma-2016-0013
Pasangka, I. G. (2021). Teorema titik tetap berkaitan dengan pemetaan kontraksi-F dan jarak-ω pada ruang metrik lengkap. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 15(2), 355–360. https://doi.org/10.30598/barekengvol15iss2pp355-360
Taipi, B. Q. (2023). The convex hull of a compact set. Researchgate, 282(4), 637–644. https://doi.org/10.1007/BF01462889
Wu, S., Awan, M. U., Noor, M. A., Noor, K. I., & Iftikhar, S. (2019). On a new class of convex functions and integral inequalities. Journal of Inequalities and Applications, 2019(1), 131. https://doi.org/10.1186/s13660-019-2074-y
Yaying, T. (2020). Arithmetic continuity in cone metric space. Dera Natung Government College Research Journal, 5(1), 55–62. https://doi.org/10.56405/dngcrj.2020.05.01.07
Downloads
Published
Issue
Section
License
Copyright (c) 2025 RANGE: Jurnal Pendidikan Matematika

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
RANGE: Jurnal Pendidikan Matematika


