Comparative Effects of Fermentation of Sugar Kefir Grains (Tibicos) And Tetracyclin On Three Major Ileum Bacteries In Broiler Chickens
DOI:
https://doi.org/10.32938/ja.v10i3.9736Keywords:
Broiler Chickens, Ileal Microbiota, Multivariate Analysis, Tibicos, TetracyclineAbstract
Antibiotics such as tetracycline in the livestock industry face severe restrictions due to increasing antimicrobial resistance. Tibicos fermentation, as a natural probiotic, has the possibility to be an adequate and safe alternative for modulating gut microbiota. The study aimed to compare the effectiveness of tibicos fermentation and tetracycline in modulating the population of three major bacteria (Escherichia coli, Lactobacillus, and Salmonella spp.) in the ileum of broiler chickens. Ninety Indian River strain broilers were divided into three treatments with three replicates (n=10 per replicate): control with pure water (KN), 45 ppm tetracycline (KP), and 5% tibicos fermentation (FT). Treatments were given through drinking water ad libitum from 8 to 35 days of age. Bacterial populations were analyzed using the Total Plate Count (TPC) method on ileal samples aged 35 days. Data analysis used a multivariate approach including Bray-Curtis dissimilarity, PERMANOVA, Principal Coordinates Analysis (PCoA), and Similarity of Percentage Analysis (SIMPER). Bray-Curtis dissimilarity analysis showed moderate differences in microbiota composition between treatments with values of 0,064854 (FT vs KN), 0,069687 (FT vs KP), and 0,07451 (KN vs KP). SIMPER analysis identified E. coli as the primary contributor to differences between treatments, with contributions of 39,50% (KP vs KN, p=0,005), 65,70% (KP vs FT, p=0,001), and 41,10% (KN vs FT, p=0,001). Principal Coordinates Analysis showed apparent clustering between treatments, with tibicos fermentation producing microbiota profiles that differed from control and tetracycline. Tibicos fermentation showed comparable effectiveness to tetracycline in modulating ileal bacterial composition, particularly in controlling pathogenic populations while maintaining Lactobacillus stability.
References
Anderson, M. J. 2017. Permutational Multivariate Analysis of Variance (PERMANOVA). In Wiley StatsRef: Statistics Reference Online (pp. 1-15).
Anderson, M. J., & Willis, T. J. 2003. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology, 84(2): 511-525.
Bermudez-Brito, M., Plaza-Díaz, J., Muñoz-Quezada, S., Gómez-Llorente, C., & Gil, A. 2012. Probiotic mechanisms of action. Annals of Nutrition and Metabolism, 61(2): 160 - 174.
Bobany, D. d. M., Pimentel, M. d. A. P., Martins, R. R. C., Netto, B. A. d. S., & Tolla, M. S. d. 2010. Atividade antimicrobiana do mel de abelhas jataí (Tetragonisca angustula) em cultivo de microrganismos do conduto auditivo de caninos domésticos (Canis familiaris). Ciência Animal Brasileira / Brazilian Animal Science, 11(2): 441 - 446.
Castanon, J. I. R. 2007. History of the use of antibiotic as growth promoters in european poultry feeds. Poultry Science, 86(11): 2466 - 2471.
Collado, M. C., Meriluoto, J., & Salminen, S. 2007. Role of commercial probiotic strains against human pathogen adhesion to intestinal mucus. Letters in Applied Microbiology, 45(4): 454 - 460.
Cotter, P. D., Hill, C., & Ross, R. P. 2005. Bacteriocins: Developing innate immunity for food. Nature Reviews Microbiology, 3(10): 777 - 788.
Gaggìa, F., Mattarelli, P., & Biavati, B. 2010. Probiotics and prebiotics in animal feeding for safe food production. International Journal of Food Microbiology, l 1, S15 - 28.
Hilmi, M., Zuprizal, Z., Dono, N. D., & Ariyadi, B. 2024. Silver nanoparticles as an antibacterial candidate for poultry: An alternative to synthetic antibiotics. Advances in Animal and Veterinary Sciences, 12(11).
Huyghebaert, G., Ducatelle, R., & Van Immerseel, F. 2011. An update on alternatives to antimicrobial growth promoters for broilers. The Veterinary Journal , 187(2): 182 - 188.
Kabir, S. M. L. 2009. The role of probiotics in the poultry industry. International Journal of Molecular, 10(8): 3531 - 3546.
Legendre, P., & Legendre, L. 2012. Numerical Ecology. Elsevier Science.
Lozupone, C., & Knight, R. (2005). UniFrac: a new phylogenetic method for comparing microbial communities. Applied and Environmental Microbiology , 71(12):8228-8235.
Marsh, A. J., O'Sullivan, O., Hill, C., Ross, R. P., & Cotter, P. D. 2014. Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples. Food Microbiology, 38: 171 - 178.
Oakley B. B, Lillehoj H. S, Kogut M. H, Kim W. K, Maurer J. J, Pedroso A, Lee M. D, Collett S. R, Johnson T. J, & Cox N. A. 2014. The chicken gastrointestinal microbiome. FEMS Microbiology Letters, 360(2): 100 - 112.
Patterson, J. A., & Burkholder, K. M. 2003. Application of prebiotics and probiotics in poultry production. Poultry Science, 82(4): 627 - 631.
Ricke, S. C. 2003. Perspectives on the use of organic acids and short chain fatty acids as antimicrobials. Poultry Science, 82(4): 632 - 639.
Ricotta, C., & Pavoine, S. 2022. A new parametric measure of functional dissimilarity: Bridging the gap between the Bray-Curtis dissimilarity and the Euclidean distance. Ecological Modelling, 466: 109880.
Rinttilä, T., & Apajalahti, J. 2013. Intestinal microbiota and metabolites, implications for broiler chicken health and performance1 1Presented as a part of the Informal Nutrition Symposium “Metabolic Responses to Nutrition and Modifiers” at the Poultry Science Association's annual meeting in Athens, Georgia, July 9, 2012. Journal of Applied Poultry Research, 22(3): 647 - 658.
Sergeant, M. J., Constantinidou, C., Cogan, T. A., Bedford, M. R., Penn, C. W., & Pallen, M. J. 2014. Extensive microbial and functional diversity within the chicken cecal microbiome. Plos One, 9(3): e91941.
Shi, Y., Zhang, L., Do, K.-A., Peterson, C. B., & Jenq, R. R. 2020. aPCoA: covariate adjusted principal coordinates analysis. Bioinformatics, 36(13): 4099 - 4101.
Zhao, L., Wang, G., Siegel, P., He, C., Wang H., Zhao W., Zhai Z., Tian F., Zhao J., Zhang H., Sun Z., Chen, W., Zhang, Y., Meng, H. 2013. Quantitative Genetic Background of the Host Influences Gut Microbiomes in Chickens. Scientific Reports, 3(1): 1163.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Mustofa Hilmi

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The journal is committed to free-open access that does not charge readers or their institutions for access. Readers are entitled to read, download, copy, distribute, print, search, or link to the full texts of articles, as long as not for commercial purposes. The license type is CC BY-NC 4.0.







.png)
.jpg)
