Segmentasi Daun Cendana Berbasis Citra Menggunakan Otsu Thresholding
DOI:
https://doi.org/10.32938/jitu.v3i1.3868Keywords:
Segmentasi, Otsu Thresholding, Daun cendanaAbstract
The segmentation process is the separation of parts of the object area from the background in an image, so that segmented objects can be processed for other purposes such as pattern recognition. The results of segmentation must be accurate, if it is not accurate in separating objects in the image it will affect the results of further processing. The segmentation process is carried out using the Otsu Thresholding method on sandalwood leaf images by first applying the Median filter to reduce noise. After obtaining the segmented image, then performing performance measurements. The segmentation results from each test are evaluated using the RAE (relative foreground area error) and ME (misclassification error). The segmentation results of 8 sandalwood leaf images from 2 existing conditions show that, sandalwood leaf image segmentation with good leaf conditions obtains the best segmentation results with smaller errors of 5 image data. While the images of sandalwood leaves affected by the disease as many as 3 image data have more diverse areas so that the segmentation results are not good without any morphological process
References
A. Syaeful, M. I. Fadillah, I. Muftadi, and D. Iskandar, “Klasifikasi Citra Bunga Dahlia Berdasarkan Warna Menggunakan Metode Otsu Thresholding Dan Naïve Bayes,” J. Sains Komput. Inform. , vol. 6, no. 1, p. 575582, 2022.
E. Fernando Ade Pratama and J. Jumadi, “Implementasi Metode K-Means ClusteringPada Segmentasi Citra Digital,” J. Media Infotama, vol. 18, no. 2, p. 341139, 2022.
B. Baso, D. Nababan, Risald, and R. Y. Kolloh, “Segmentasi Citra Tenun Menggunakan Metode Otsu Thresholding dengan Median Filter.” pp. 1–6, 2022, doi: https://doi.org/10.34012/jutikomp.v5i1.2586.
M. Furqan, Sriani, and I. E. Y. Sari, “Penerapan Metode Otsu dalam Melakukan Segmentasi Citra pada Citra Naskah Arab.” p. Vol.20, No.1, 59~72, 2020.
N. Novita, H. Dafitri, and N. Wulan, “Implementasi Algoritma Otsu Thresholding Dengan Median Filter Dalam Segmentasi Citra Digital Naskah Kuno Batak ( Studi Kasus : Meseum Negeri Provinsi Sumatera Utara ),” vol. 1, no. 1, pp. 7–9, 2022.
N. A. Putra and R. Amalia, “Perancangan Aplikasi Perbaikan Citra Digital pada Hasil Screenshot dengan Menggunakan Metode Multiscale Retinex dan Median Filter,” vol. 15, no. 3, pp. 180–191, 2022.
A. Fauzi, “Pengurangan Derau (Noise) pada Citra Paper Dokumen menggunakan Metode Gaussian Filter dan Median Filter,” KAKIFIKOM (Kumpulan Artik. Karya Ilm. Fak. Ilmu Komputer), vol. 04, no. 01, pp. 7–15, 2022, doi: 10.54367/kakifikom.v4i1.1871.
N. OTSU, “A Tlreshold Selection Method from Gray-Level Histograms.” 1979.
R. F. Nugrohoputri et al., “Segmentasi citra nukleus sel kanker serviks menggunakan otsu thresholding dan morfologi closing,” JSI J. …, vol. 14, no. 1, pp. 2533–2543, 2022.
Yovi Apridiansyah, Rozali Toyib, and Ardi Wijaya, “Metode Otsu dan Mathematical Morphology Dalam Segmentasi Region Karakter Plat Nomor Kendaraan,” J. Appl. Comput. Sci. Technol., vol. 3, no. 1, pp. 134–143, 2022, doi: 10.52158/jacost.v3i1.277.
B. Meidyani, L. S. Qolby, A. M. Fajrin, A. Z. Arifin, and D. A. Navastara, “Iterated Merging Region Based on The Average Grayscale Difference For Interactive Image Segmentation.” 2019.
A. Z. Arifin, R. Indraswari, N. Suciati, and E. R. Astuti, “Region Merging Strategy Using Statistical Analysis for Interactive Image Segmentation on Dental Panoramic Radiographs.” 2017.