Implementasi Deep Learning Berbasis Convolutional Neural Network untuk Klasifikasi Motif Tenun Timor

Authors

  • Budiman Baso Universitas Timor
  • Ramaulvi Muhammad Akhyar Universitas Mulawarman

DOI:

https://doi.org/10.32938/jitu.v4i1.7971

Keywords:

Deep Learning, Convolutional Neural Network, Timor Weaving

Abstract

This research develops a classification model for Timorese weaving motifs, including Buna, Kaimafafa, Kemak, and Nunkolo motifs, using Deep Learning method based on Convolutional Neural Network (CNN). Timor's diverse weaving motifs reflect the richness of the local culture, but manual classification is often time-consuming. To overcome this challenge, we applied CNN with transfer learning techniques to a dataset of pre-processed Timorese weaving images. Based on the experimental results, the developed model achieved an accuracy of 95.00% on the test data with the use of 20 epochs, demonstrating the effectiveness of CNN in classifying weaving motifs automatically and efficiently. This research has the potential to support cultural preservation and the development of the weaving industry through technology-based practical applications that are optimal in terms of performance and computational efficiency.

References

[1] Baso B, Nababan D, Kolloh RY. Segmentasi citra tenun menggunakan metode Otsu Thresholding dengan Median Filter. Jurnal Teknologi Dan Ilmu Komputer Prima (JUTIKOMP). 2022 Apr 25;5(1):1-6..

[2] Baso B, Suciati N. Temu Kembali Citra Tenun Nusa Tenggara Timur Menggunakan Ekstraksi Fitur yang Robust Terhadap perubahan Skala Rotasi dan Pencahayaan. Jurnal Teknologi Informasi Dan Ilmu Komputer (JTIIK). 2020 Apr;7(2):349-58.

[3] Kelen YP, Baso B. Klasifikasi Tenun Timor Menggunakan Metode SVM Berdasarkan Speeded Up Robust Features. Jurnal Teknologi Informasi dan Ilmu Komputer. 2023 Dec 30;10(6):1353-60.

[4] Prayoga A, Sukmasetya P, Yudianto MR, Hasani RA. Arsitektur Convolutional Neural Network untuk Model Klasifikasi Citra Batik Yogyakarta. Journal of Applied Computer Science and Technology. 2023 Nov 18;4(2):82-9.

[5] Alya RF, Wibowo M, Paradise P. Classification of batik motif using transfer learning on convolutional neural network (CNN). Jurnal Teknik Informatika (Jutif). 2023 Feb 10;4(1):161-70.

[6] Wona MM, Asyifa SA, Virgianti R, Hamid MN, Handoko IM, Septiani NW, Lestari M. Klasifikasi Batik Indonesia Menggunakan Convolutional Neural Network (CNN). Jurnal Rekayasa Teknologi Informasi (JURTI). 2023 Dec 27;7(2):172-9.

[7] Andrian R, Herwanto HC, Taufik R, Kurniawan D. Performance Comparison Between LeNet And MobileNet In Convolutional Neural Network for Lampung Batik Image Identification. Scientific Journal of Informatics. 2024 Feb 28;11(1):147-54.

[8] Rizki Y, Taufiq RM, Mukhtar H, Putri D. Klasifikasi Pola Kain Tenun Melayu Menggunakan Faster R-CNN. IT Journal Research and Development. 2021 Jan 6;5(2):215-25.

[9] Addakhil MH. Sistem Identifikasi Motif Pakaian Berbasis Citra dengan Metode Convolutional Neural Network (Doctoral dissertation, Universitas Islam Negeri Maulana Malik Ibrahim).

[10] Riyadi AS, Wardhani IP, Widayati S. Klasifikasi citra anjing dan kucing menggunakan metode convolutional neural network (CNN). InProsiding Seminar SeNTIK 2021 Sep 23 (Vol. 5, No. 1, pp. 307-311).

[11] Naufal MF, Siswantoro J, Wicaksono MG. Klasifikasi Tulisan Tangan pada Resep Obat Menggunakan Convolutional Neural Network. Techno. com. 2023 May 1;22(2):508-26.

[12] Sihombing RS, Siregar RN, Sitorus V, Sitompul TS. Pengenalan Ekspresi Wajah Menggunakan Convolutional Neural Network (CNN). Journal of Creative Student Research. 2023 Dec 5;1(6):89-97.

[13] Novriandy MF, Rahmat B, Junaidi A. Klasikasi Citra Pada Penyakit Kanker Mulut Menggunakan Arsitektur Densenet201 Menggunakan Optimasi Adam Dan SGD. JATI (Jurnal Mahasiswa Teknik Informatika). 2024 Jun 30;8(4):6132-40.. Available: http://jtika.if.unram.ac.id/index.php/JTIKA/.

[14] Marnelius CD, Usman K, Pratiwi NK. Klasifikasi Jenis Beras Berbasis Citra Dengan Menggunakan Deep Learning. eProceedings of Engineering. 2023 Nov 1;10(5).

[15] Mardianto R, Quinevera S, Rochimah S. Perbandingan Metode Random Forest, Convolutional Neural Network, dan Support Vector Machine Untuk Klasifikasi Jenis Mangga. Journal of Applied Computer Science and Technology. 2024 May 12;5(1):63-71.

[16] Bongso DF, Patmasari R, Saidah S. Perancangan Sistem Klasifikasi Alzheimer Berbasis Pengolahan Citra MRI Menggunakan Convolutional Neural Network (CNN). eProceedings of Engineering. 2023 Nov 1;10(5).

[17] Syahputra F. Analisis Arsitektur Deep Learning Mobilenet dalam Mengklasifikasi Hama Daun Jambu Madu (Doctoral dissertation, Universitas Medan Area).

Downloads

Published

2024-05-23