ALGORITMA NON-PHOTOREALISTIC RENDERING UNTUK KARTUN MENGGUNAKAN K-MEANS DAN CANNY

Authors

  • Budiman Baso Universitas Timor
  • Irit Maulana Sapta Semesta Bilingual Boarding School Semarang
  • Saniyatul Mawaddah Program Studi D3 Teknik Informatika PSDKU Lamongan, Departemen Informatika, PENS

DOI:

https://doi.org/10.32938/jitu.v1i1.888

Keywords:

non photorealistic rendering, cartoon, quantization, canny.

Abstract

Cartoons are one type of illustration usually in a non-realistic or semi-realistic style. To make a cartoon drawing manually requires good drawing ability. So, not everyone can make cartoons. This research proposes a non-photorealistic rendering algorithm to create cartoon drawings automatically. The algorithm consists of four phases. First, create an image abstraction using bilateral filtering. Second, using kmeans clustering for abstract image quantization. Third, get the contour lines of the drawing using the canny algorithm. Fourth, contour lines and quantized images are combined. The results show that this algorithm can produce good visualization of cartoon images.

References

GUASTELLA, D. AND VALENTI, C., 2016. Cartoon filter via adaptive abstraction. Journal of Visual Communication and Image Representation, [online] 36, pp.149–158. Available at: <http://dx.doi.org/10.1016/j.jvcir.2016.01.012>.

Rosyidi, M. Suyanto, Amir F.S., 2014. Penerapan Teknik Non-Photorealistic Rendering (NPR) Dalam Pembuatan Efek Warna Goresan Pensil Pada Citra.

KANG, H., LEE, S. AND CHUI, C.K., 2007. Coherent line drawing. Proc. NPAR, [online] 1(212), pp.43–50. Available at: <http://doi.acm.org/10.1145/1274871.1274878>.

LU, L., PU, Y., ZHANG, H. AND XU, D., 2013. A Non-photorealistic Rendering Algorithm For Cartoons. 2(Cisp), pp.680–685.

MALVIYA, A. AND BHIRUD, S.G., 2009. Multi-Focus Image Fusion of Digital Images. 2009 International Conference on Advances in Recent Technologies in Communication and Computing, [online] pp.887–889. Available at: <http://ieeexplore.ieee.org/document/5328453/>.

MULE, M.B., 2015. Basic Medical Image Fusion Methods. International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), 4(3), pp.1046–1049.

PALUS, H., 2004. On Color Image Quantization by the K-Means Algorithm.

RANI, K. AND SHARMA, R., 2013. Study of Different Image fusion Algorithm. International Journal of Emerging Technology and Advanced Engineering (ISSN 2250-2459, ISO 9001:2008 Certified Journal, Volume 3, Issue 5, May 2013, 3(5), pp.288–291.

TOMASI, C. AND MANDUCHI, R., 1998. Bilateral filtering for gray and color images. Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), [online] pp.839–846. Available at: <http://ieeexplore.ieee.org/document/710815/>.

YUAN, L. AND XU, X., 2015. Adaptive Image Edge Detection Algorithm Based on Canny Operator. 2015 4th International Conference on Advanced Information Technology and Sensor Application (AITS), [online] (2), pp.28–31. Available a t: <http://ieeexplore.ieee.org/document//>.

Downloads

Published

2021-02-13