Analisis Pengaruh Pola Penggunaan Gadget Terhadap Computer Vision Syndrome Menggunakan Algoritma Machine Learning
DOI:
https://doi.org/10.32938/jitu.v5i1.9138Keywords:
Computer Vision Syndrome, Decision Tree, Naive Bayes, Random ForestAbstract
This research aims to analyze the impact of gadget usage on eye health using Decision Tree, Random Forest, and Naive Bayes algorithms. The increasing use of gadgets in society potentially causes eye health disorders, specifically Computer Vision Syndrome (CVS) symptoms that require in-depth investigation. Data was collected through a survey questionnaire about gadget usage habits and respondents' eye conditions. The OSEMN method was used to process and analyze data by applying three classification algorithms. Research findings showed the Random Forest algorithm provided the best performance with 73 % accuracy, followed by Naive Bayes at 65 %, and Decision Tree at 64 %. The study provides insights into the impact of gadget usage on eye health and recommendations for maintaining usage balance to prevent health disruptions.
References
[1] A. T. Alisyahbana, “Dampak Penggunaan Gadget Terhadap Kesehatan Mata Remaja,” Sehat Rakyat: Jurnal Kesehatan Masyarakat, vol. 2, no. 4, pp. 582–589, 2023, doi: 10.54259/sehatrakyat.v2i4.2272.
[2] S. Poudel and S. P. Khanal, “Magnitude and Determinants of Computer Vision Syndrome (CVS) among IT Workers in Kathmandu, Nepal,” Nepalese Journal of Ophthalmology, vol. 12, no. 24, pp. 245–251, 2020, doi: https://doi.org/10.3126/nepjoph.v12i2.29387.
[3] A. J. Munsamy et al., “Evidence on the Effects of Digital Blue Light on the Eye: A Scoping Review,” African Vision and Eye Health, vol. 81, no. 1, pp. 1–9, 2022, doi: 10.4102/aveh.v81i1.685.
[4] R. Wandini, L. Novikasari, and M. Kurnia, “Hubungan Penggunaan Gadget Terhadap Kesehatan Mata Anak Di Sekolah Dasar Al Azhar I Bandar Lampung,” Malahayati Nursing Journal, vol. 2, no. 4, pp. 810–819, 2020, doi: https://doi.org/10.33024/mnj.v2i4.3049.
[5] A. W. Azzahro, B. Murti, and E. P. Pamungkasari, “Effect of Digital Device on Computer Vision Syndrome: Meta-Analysis,” Journal of Epidemiology and Public Health, vol. 8, no. 2, pp. 181–190, 2023, doi: 10.26911/jepublichealth.2023.08.02.03.
[6] M. Iqbal, O. Said, O. Ibrahim, and A. Soliman, “Visual Sequelae of Computer Vision Syndrome: A Cross-Sectional Case-Control Study,” J Ophthalmol, vol. 2021, pp. 1–16, 2021, doi: 10.1155/2021/6630286.
[7] F. Ciputra and N. M. Dwipayani, “Computer Vision Syndrome: Sebuah Tinjauan Pustaka,” Medical Journal : Jurnal Berkala Ilmiah Kedokteran, vol. 5, no. 1, pp. 49–59, 2022.
[8] N. C. Sancho et al., “Rasch-Validated Italian Scale for Diagnosing Digital Eye Strain: The Computer Vision Syndrome Questionnaire IT,” Int J Environ Res Public Health, vol. 19, no. 8, pp. 1–14, 2022, doi: 10.3390/ijerph19084506.
[9] F. T. Br Sitepu, V. A. Sirait, and R. Yunis, “Analisis Runtun Waktu Untuk Memprediksi Jumlah Mahasiswa Baru Dengan Model Prophet Facebook,” Paradigma - Jurnal Komputer dan Informatika, vol. 23, no. 1, pp. 99–105, 2021, doi: 10.31294/p.v23i1.9756.
[10] W. Abbaoui, S. Retal, S. Ziti, B. El Bhiri, and H. Moussif, “Ischemic Stroke Classification Using VGG-16 Convolutional Neural Networks: A Study on Moroccan MRI Scans,” International journal of online and biomedical engineering, vol. 20, no. 2, pp. 61–77, 2024, doi: 10.3991/ijoe.v20i02.44845.
[11] S. Saleem, N. Hasan, A. Khattar, P. R. Jain, T. K. Gupta, and M. Mehrotra, “DeLTran15: A Deep Lightweight Transformer-based Framework for Multiclass Classification of Disaster posts on X,” IEEE Access, vol. 12, pp. 153676–153693, 2024, doi: 10.1109/ACCESS.2024.3478790.
[12] N. Anugrahyanti, M. N. R. Akib, R. N. Maharani, I. D. K. Kamaluddin, S. Latief, and A. I. Arfah, “Pengaruh Penggunaan Laptop dan Gawai terhadap Kesehatan Mata Mahasiswa Kedokteran UMI di Era Pandemi,” Fakumi MedicalJournal: Jurnal Mahasiswa Kedokteran, vol. 3, no. 10, pp. 750–759, 2023.
[13] A. Asrulla, R. Risnita, M. S. Jailani, and F. Jeka, “Populasi dan Sampling (Kuantitatif), Serta Pemilihan Informan Kunci (Kualitatif) dalam Pendekatan Praktis,” Jurnal Pendidikan Tambusai, vol. 7, no. 3, pp. 26320–26332, 2023, [Online]. Available: https://www.researchgate.net/publication/386875018
[14] I. Lapa, S. Ferreira, C. Mateus, N. Rocha, and M. A. Rodrigues, “Real-Time Blink Detection as an Indicator of Computer Vision Syndrome in Real-Life Settings: An Exploratory Study,” Int J Environ Res Public Health, vol. 20, no. 5, pp. 1–11, 2023, doi: 10.3390/ijerph20054569.
[15] K. Kumari, M. Bhardwaj, and S. Sharma, “OSEMN Approach for Real Time Data Analysis,” International Journal of Engineering and Management Research, vol. 10, no. 2, pp. 107–110, 2020, doi: 10.31033/ijemr.10.2.11.
[16] S. Ghiasi Hafezi et al., “Predicting High Sensitivity C-reactive Protein Levels and Their Associations in A Large Population Using Decision Tree and Linear Regression,” Sci Rep, vol. 14, no. 30298, pp. 1–16, 2024, doi: 10.1038/s41598-024-81714-2.
[17] S. Batool and S. Zainab, “A Comparative Performance Assessment of Artificial Intelligence Based Classifiers and Optimized Feature Reduction Technique for Breast Cancer diagnosis,” Comput Biol Med, vol. 183, pp. 1–19, 2024, doi: 10.1016/j.compbiomed.2024.109215.
[18] T. B. Reza and N. Salma, “Prediction and Feature Selection of Low Birth Weight Using Machine Learning Algorithms,” J Health Popul Nutr, vol. 43, no. 157, pp. 1–13, 2024, doi: 10.1186/s41043-024-00647-8.
[19] D. Haganta Depari et al., “Perbandingan Model Decision Tree, Naive Bayes dan Random Forest untuk Prediksi Klasifikasi Penyakit Jantung,” Jurnal Informatik, vol. 18, no. 3, pp. 239–248, 2022.
[20] P. Patel, S. Chauhan, S. Gupta, T. Gupta, and R. Agrawal, “Mitigating Class Imbalance with Ensemble SMOTEfied-GAN: Advancing Detection Strategies for Automobile Insurance Fraud,” International Journal of Fuzzy Logic and Intelligent Systems, vol. 24, no. 4, pp. 333–342, 2024, doi: 10.5391/IJFIS.2024.24.4.333.
[21] J. Allgaier and R. Pryss, “Cross-Validation Visualized: A Narrative Guide to Advanced Methods,” Mach Learn Knowl Extr, vol. 6, no. 2, pp. 1378–1388, Jun. 2024, doi: 10.3390/make6020065.
[22] M. A. Hossain, T. Hasan, F. Ahmed, S. H. Cheragee, M. H. Kanchan, and M. A. Haque, “Towards Superior Android Ransomware Detection: An Ensemble Machine Learning Perspective,” Cyber Security and Applications, vol. 3, Dec. 2025, doi: 10.1016/j.csa.2024.100076.
[23] E. Yeskuatov, S. L. Chua, and L. K. Foo, “Detecting Suicidal Ideations in Online Forums with Textual and Psycholinguistic Features,” Applied Sciences, vol. 14, no. 21, pp. 1–20, 2024, doi: 10.3390/app14219911.
[24] Y. Raddad, A. Hasasneh, O. Abdallah, C. Rishmawi, and N. Qutob, “Integrating Statistical Methods and Machine Learning Techniques to Analyze and Classify COVID-19 Symptom Severity,” Big Data and Cognitive Computing, vol. 8, no. 12, pp. 1–21, 2024, doi: 10.3390/bdcc8120192.
[25] P. Bathla and R. Kumar, “A Hybrid System to Predict Brain Stroke Using a Combined Feature Selection and Classifier,” Intelligent Medicine, vol. 4, no. 2, pp. 75–82, 2024, doi: 10.1016/j.imed.2023.06.002.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Hamna Izzatunnisa Ahmad, Syahid Abdullah, Ahmad Chusyairi (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
