Analisis Pengaruh Data Augmentasi Pada Klasifikasi Tenun Menggunakan Deep Learning Berbasis Convolutional Neural Network

Analisis Pengaruh Data Augmentasi Pada Klasifikasi Tenun Menggunakan Deep Learning Berbasis Convolutional Neural Network

Authors

  • Budiman Baso Universitas Timor
  • Risald Risald Universitas Timor
  • Ramaulvi Muhammad Akhyar Universitas Mulawarman

DOI:

https://doi.org/10.32938/jitu.v5i1.9209

Keywords:

Timor weaving, Data Augmentation, Deep Learning, Convolutional Neural Network, Image Classification, Deep Learning

Abstract

This research develops a classification model of Timorese weaving motifs using Deep Learning method based on Convolutional Neural Network (CNN). Timor's diverse weaving motifs reflect the richness of local culture, but manual classification takes a long time and is prone to subjectivity. To improve model performance, Data Augmentation techniques, such as flipping, rotation, and  zooming,, are applied to enrich the variety of pre-processed Timor weaving image datasets. In addition, the CNN model was developed using Transfer Learning techniques to improve training efficiency. 

Experimental results show that CNN without augmentation achieves 95.00% accuracy, 95.00% precision, 95.08% recall, and 95.04% F1-score, with a computation time of 2.37 minutes at 30 epochs. Meanwhile, applying Data Augmentation increased the model accuracy to 96.66%, precision 96.66%, recall 96.87%, and F1-score 96.77%, and reduced the computation time to 2.11 minutes. 

Analysis of the effect of augmentation data shows that increasing the variety of images contributes to the improvement of model generalization. Therefore, the use of CNN with Data Augmentation is a more optimal solution in the classification of Timorese weaving motifs. This research has the potential to support cultural preservation as well as the development of an artificial intelligence-based weaving motif identification system.

References

[1] Baso B, Nababan D, Kolloh RY. Segmentasi citra tenun menggunakan metode Otsu Thresholding dengan Median Filter. Jurnal Teknologi Dan Ilmu Komputer Prima (JUTIKOMP). 2022 Apr 25;5(1):1-6.

[2] Kelen YP, Baso B. Klasifikasi Tenun Timor Menggunakan Metode SVM Berdasarkan Speeded Up Robust Features. Jurnal Teknologi Informasi dan Ilmu Komputer. 2023 Dec 30;10(6):1353-60.

[3] Baso B, Suciati N. Temu Kembali Citra Tenun Nusa Tenggara Timur Menggunakan Ekstraksi Fitur yang Robust Terhadap perubahan Skala Rotasi dan Pencahayaan. Jurnal Teknologi Informasi Dan Ilmu Komputer (JTIIK). 2020 Apr;7(2):349-58.

[4] Baso B, Akhyar RM. Implementasi Deep Learning Berbasis Convolutional Neural Network untuk Klasifikasi Motif Tenun Timor. Journal of Information and Technology. 2024 May 23;4(1):22-5.

[5] Ariessaputra S, Vidiasari VH, Al Sasongko SM, Darmawan B, Nababan S. Classification of Lombok Songket and Sasambo Batik Motifs Using the Convolution Neural Network (CNN) Algorithm. JOIV: International Journal on Informatics Visualization. 2024 Mar 31;8(1):38-44.

[6] Anggoro DA, Marzuki AA, Supriyanti W. Classification of Solo Batik patterns using deep learning convolutional neural networks algorithm. TELKOMNIKA (Telecommunication Computing Electronics and Control). 2024 Feb 1;22(1):232-40.

[7] Fahri S, Situmorang S. Implementasi Metode Convolutional Neural Network (CNN) Dalam Klasifikasi Motif Batik. NUANSA INFORMATIKA. 2024 Jan 26;18(1):1-5.

[8] Ramadhan DA, Ramadhani D. Classification of Riau Batik Motifs Using the Convolutional Neural Network (CNN) Algorithm. International Journal of Electrical, Energy and Power System Engineering. 2024 Nov 11;7(3):201-11.

[9] Auliaddina S, Arifin T. Use of Augmentation Data and Hyperparameter Tuning in Batik Type Classification using the CNN Model. Sistemasi: Jurnal Sistem Informasi. 2024 Jan 29;13(1):114-28.

[10] Ramadhan DA, Ramadhani D. Classification of Riau Batik Motifs Using the Convolutional Neural Network (CNN) Algorithm. International Journal of Electrical, Energy and Power System Engineering. 2024 Nov 11;7(3):201-11.

[11] Siregar AA, Citra C, Sianturi GD. Klasifikasi Batik Parang Menggunakan Convolutional Neural Network (CNN). Populer: Jurnal Penelitian Mahasiswa. 2024;3(1):62-9.

[12] Abd Manap N, Xuan LX, Singh KK, Akbari AS, Putra A. Classification of Malaysian and Indonesian Batik Designs Using Deep Learning Models. Journal of Telecommunication, Electronic and Computer Engineering (JTEC). 2024 Dec 20;16(4):23-30.

[13] Octavianus Y, Avianto D. Modifikasi Arsitektur dalam Convolutional Neural Network untuk Klasifikasi Batik Lampung dan Batik Yogyakarta. Jurnal Indonesia: Manajemen Informatika dan Komunikasi. 2025 Jan 10;6(1):522-35.

[14] Afifah WN, Lusiana V. KLASIFIKASI JENIS BATIK SEMARANGAN MENGGUNAKAN METODE CONVOLUTION NEURAL NETWORK (CNN). JIPI (Jurnal Ilmiah Penelitian dan Pembelajaran Informatika). 2025 Jan 28;10(1):542-53.

[15] Sari IP, Elvitaria L, Rudiansyah R. Data-driven approach for batik pattern classification using convolutional neural network (CNN). Jurnal Mandiri IT. 2025 Jan 30;13(3):323-31.

[16] Al Rivan ME, Devella S. A Novel Optimization Strategy for CNN Models in Palembang Songket Motif Recognition. International Journal of Advanced Computer Science & Applications. 2025 Jan 1;16(1).

[17] Sugiarto E, Budiman F, Fahmi A. Implementation of Deep Learning Based on Convolution Neural Network for Batik Pattern Recognition. Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control. 2025 Feb 1.

[18] Putra RR, Fachrie M. Implementasi Algoritma Convolutional Neural Network dalam Menentukan Kelayakan Kayu. Jurnal Indonesia: Manajemen Informatika dan Komunikasi. 2025 Jan 10;6(1):490-8.

Downloads

Published

2025-03-30