The Extended Theory of Connections (ETC) and its Contributions to Mathematics Education: Some Reflections on the Path Taken

Authors

  • Camilo Andrés Rodríguez Nieto Universidad de la Costa, Colombia

DOI:

https://doi.org/10.32938/jipm.v10i1.9434

Keywords:

Extended Theory of connections, Mathematics Education, Reflections

Abstract

For several years, a fundamental idea has been promoted that establishing mathematical connections is important for understanding mathematical concepts. This statement has led many researchers to consider that students' difficulties are caused by errors in problem-solving that arise from failing to make necessary connections linked to procedures, graphic representations, meanings, among other aspects, that are inconsistent with institutional mathematics. Given this problem, the Extended Theory of Connections emerged through consensus in the literature, importance in curricular organizations, the quality of analyses of mathematical activity, and its theoretical and methodological development with intra-mathematical, extra-mathematical, ethnomathematical, and neuro-mathematical connections. Specifically, this article addresses a review of the literature on connections that contains a theoretical framework, an appropriate methodology for identifying connections, and some practical cases of connections. It is asserted that mathematical connections are a topic of interest and should continue to be promoted in classrooms to improve the teaching and learning processes of mathematics by involving sociocultural and neurocognitive aspects.

References

Adu-Gyamfi, K., Bossé, M.J., & Chandler, K. (2017). Student connections between algebraic and graphical polynomial representations in the context of a polynomial relation. International Journal of Science and Mathematics Education, 15, 915–938. https://doi.org/10.1007/s10763-016-9730-1

Association of Mathematics Teacher Educators [AMTE]. (2017). Standards for Preparing Teachers of Mathematics. Available online at amte.net/standards

Barmby, P., Harries, T., Higgins, S. y Suggate, J. (2009). The array representation and primary children’s understanding and reasoning in multiplication. Educational Studies in Mathematics, 70(3), 217-241.

Barragán-Mosso, G., Gisel Campo-Meneses, K., & García-García, J. (2024). Conexiones matemáticas asociadas a la ecuación lineal que establecen estudiantes de bachillerato. Avances de Investigación en Educación Matemática, (25), 9-31. https://doi.org/10.35763/aiem25.4616

Berry, J. y Nyman, M. (2003). Promoting students’ graphical understanding of the calculus. The Journal of Mathematical Behavior, 22(4), 479–495.

Bishop, A. (1999). Enculturación matemática. La educación matemática desde una perspectiva cultural. Barcelona: Paidós.

Businskas, A. M. (2008). Conversations about connections: How secondary mathematics teachers conceptualize and contend with mathematical connections [Unpublished PhD Thesis]. Faculty of Education-Simon Fraser University, Canada.

Braun, V. & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101.

Campo-Meneses, K. G., & García-García, J. (2023). Conexiones matemáticas identificadas en una clase sobre las funciones exponencial y logarítmica. Bolema: Boletim de Educação Matemática, 37, 849-871. https://doi.org/10.1590/1980-4415v37n76a22

Cantillo-Rudas, B. M. (2025). Exploring neuro-mathematical connections in the resolution of a contextualized geometric problem. International Journal of Didactic Mathematics in Distance Education, 2(1), 58-80.

Cantillo-Rudas, B. M., & Rodríguez-Nieto, C. A. (2024). Relaciones entre la neurociencia y la educación matemática: Un estado del arte [Relationships between neuroscience and mathematics education: A state of the art]. Caminhos da Educação Matemática em Revista, 14(1), 33-50. https://periodicos.ifs.edu.br/periodicos/caminhos_da_educacao_matematica/article/view/1626/1595

Cantillo-Rudas, B. M., Rodríguez-Nieto, C. A., Font, V., & Rodríguez-Vásquez, F. M. (2024). Mathematical and neuro-mathematical connections activated by a teacher and his student in the geometric problems-solving: A view of networking of theories. Eurasia Journal of Mathematics, Science and Technology Education, 20(10), 1-23. https://doi.org/10.29333/ejmste/15470

Caviedes, S., de Gamboa, G., & Badillo, E. (2019). Conexiones matemáticas que establecen maestros en formación al resolver tareas de medida y comparación de áreas. Praxis, 15(1), 69-87.

Caviedes, S., De Gamboa, G., & Badillo, E. (2024). Mathematical connections involved in area measurement processes. Research in Mathematics Education, 26(2), 237–257. https://doi.org/10.1080/14794802.2024.2370333

Cohen, L., Manion, L., & Morrison, K. (2018). Research methods in education. London and New York: Routledge. https://doi.org/10.4324/9780203224342

Coxford, A.F. (1995). The case for connections. In P. A. House & A.F. Coxford (Eds.), Connecting mathematics across the curriculum. Reston, VA: National Council of Teachers of Mathematics.

Dans-Moreno, E., Rodríguez-Vásquez, F. M., & García-García, J. (2022). Conexiones matemáticas asociadas a las ecuaciones diferentes ordinarias de primer orden. PNA 17(1), 25-50. https://doi.org/10.30827/pna.v17i1.23748

Day, L., Siemon, D., Callingham, R., & Seah, R. (2024). Connecting the threads: the role of multiplicative thinking in algebraic, geometrical, and statistical reasoning. Research in Mathematics Education, 26(2), 325–347. https://doi.org/10.1080/14794802.2024.2372365

D’Ambrosio, U. (2001). Etnomatemática: Elo entre las tradições e a modernidad. Colección: Tendencias en educación matemática. Belo Horizonte: Autêtica.

De Gamboa, G., Barrera, S. C., & Badillo, E. (2024). El papel de las conexiones intra-matemáticas en el aprendizaje de los números decimales. Avances de investigación en educación matemática: AIEM, (25), 131-149.

Departament d’Ensenyament. (2017). Competències bàsiques de l’àmbit matemàtic. Recuperado de: http://ensenyament.gencat.cat/web/.content/home/departament/publicacions/colleccions/competenc ies-basiques/eso/eso-matematic.pdf.

Dirección General de Bachillerado [DGB]. (2018). Cálculo diferencial. Recuperado el 06 de diciembre de 2019 https://www.dgb.sep.gob.mx/informacion-academica/programas-de-estudio/CFP/5to-Semestre/Calculo-Diferencial.pdf

Dubinsky, E., Weller, K., Mcdonald, M. A., & Brown, A. (2005). Some historical issues and paradoxes regarding the concept of infinity: An APOS-based analysis: Part 1. Educational studies in mathematics, 58(3), 335-359. https://doi.org/10.1007/s10649-005-2531-z

Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61, 103–131. https://doi.org/10.1007/s10649-006-0400-z

Dolores-Flores, C., & García-García, J. (2017). Conexiones Intramatemáticas y Extramatemáticas que se producen al Resolver Problemas de Cálculo en Contexto: un Estudio de Casos en el Nivel Superior [Intra-mathematical and extra-mathematical connections that occur when solving Calculus’ problems in context: A case study at a higher level]. Bolema: Mathematics Education Bulletin, 31(57), 158-180. https://doi.org/10.1590/1980-4415v31n57a08

Dolores-Flores, C., Rivera-López, M., & García-García, J. (2021). Exploring mathematical connections of pre-university students through tasks involving rates of change. International Journal of Mathematical Education in Science and Technology, 50(3), 369-389. https://doi.org/10.1080/0020739X.2018.1507050

Drijvers, P., Godino, J. D., Font, V., & Trouche, L. (2013). One episode, two lenses. Educational Studies in Mathematics, 82(1), 23–49. https://doi.org/10.1007/s10649-012-9416-8

Eli, J. A., Mohr-Schroeder, M. J., & Lee, C. W. (2011). Exploring mathematical connections of prospective middle-grades teachers through card-sorting tasks. Mathematics Education Research Journal, 23(3), 297–319. https://doi.org/10. 1007/s13394-011-0017-0

Eli, J. A., Mohr-Schroeder, M. J., & Lee, C. W. (2013). Mathematical Connections and Their Relationship to Mathematics Knowledge for Teaching Geometry. School Science and Mathematics, 113(3), 120–134.

Evitts, T. (2004). Investigating the mathematical connections that preservice teachers use and develop while solving problems from reform curricula [Unpublished dissertation]. Pennsylvania State University College of Education. EE. UU.

Font, V., & Contreras, A. (2008). The problem of the particular and its relation to the general in mathematics education. Educational Studies in Mathematics, 69, 33-52. https://doi.org/10.1007/s10649-008-9123-7

Frías, A., & Castro, E. (2007). Influencia del número de conexiones en la representación simbólica de problemas aritméticos de dos pasos. PNA, 2(1), 29-41.

García-García, J. G. (2019). Escenarios de exploración de conexiones matemáticas [mathematical connection exploration scenarios]. Números: Revista de Didáctica de las Matemáticas, 4 (100), 129–133.

García-García, J. (2024). Mathematical understanding based on the mathematical connections made by Mexican high school students regarding linear equations and functions. The Mathematics Enthusiast, 21(3), 673-718. https://doi.org/10.54870/1551-3440.1646

García-García, J., & Dolores-Flores, C. (2018). Intra-mathematical connections made by high school students in performing Calculus tasks. International Journal of Mathematical Education in Science and Technology, 49(2), 227-252. https://doi.org/10.1080 /0020739X.2017.1355994

García-García, J., & Dolores-Flores, C. (2021). Pre-university students' mathematical connections when sketching the graph of derivative and antiderivative functions. Mathematics Education Research Journal, 33, 1-22. https://doi.org/10.1007/s13394-019-00286-x

Godino, J. D., Batanero, C., & Font, V. (2007). The onto-semiotic approach to research in mathematics education. ZDM-The International Journal on Mathematics Education, 39(1-2), 127-135. https://doi.org/10.1007/s11858-006-0004-1

Godino, J. D., Batanero, C., & Font, V. (2019). The ontosemiotic approach: Implications forthe prescriptive character of didactics. For the Learning of Mathematics, 39(1), 37-42.

Haltiwanger, L., & Simpson, A. M. (2013). Beyond the write answer: Mathematical connections. Mathematics Teaching in the Middle School, 18(8), 492-498.

Hatisaru, V., Stacey, K., & Star, J. R. (2024). Conexiones matemáticas en las estrategias de solución de problemas de álgebra de profesores de matemáticas de secundaria en formación. Avances de investigación en educación matemática: AIEM, (25), 33-55.

Hiebert, J., & Carpenter, T. (1992). Learning and teaching with understanding. In D.A. Grouws (Ed.), Handbook of research of mathematics teaching and learning (pp. 65–79). New York: Macmillan.

Kaur, B., & Lam, T. T. (2012). Reasoning, Communication and Connections in Mathematics: An Introduction. In B. Kaur, & T. T. Lam, Reasoning, Communication and Connections in Mathematics (pp. 1-10). World Scientific Publishing.

Kayhan, M., Yalvaç, B., & Yeltekin, E. (2017). 8th Grade Student's Skill of Connecting Mathematics to Real Life. Journal of Education and Training Studies, 5(10), 158-166.

Kenedi, A. K., Helsa, Y., Ariani, Y., Zainil, M., & Hendri, S. (2019). Mathematical connection of elementary school students to solve mathematical problems. Journal on Mathematics Education, 10(1), 69-80.

Kidron, I., & Bikner-Ahsbahs, A. (2015). Advancing research by means of the networking of theories. In A. Bikner-Ahsbahs, Ch. Knipping, & N. Presmeg (Eds.), Approaches to qualitative methods in mathematics education—Examples of methodology and methods (pp. 221–232). New York: Springer.

Koestler, C., Felton, M. D., Bieda, K. N., & Otten, S. (2013). Connecting the NCTM Process Standards and the CCSSM Practices. United States of America: National Council of Teachers of Mathematics.

Lakoff, G., & Núñez, R. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. New York, NY: Basic Books.

Lapp, D., Nyman, M., & Berry, J. (2010). Student connections of linear algebra concepts: an analysis of concept maps. International Journal of Mathematical Education in Science and Technology, 41(1), 1-18. https://doi.org/10.1080/00207390903236665

Ledezma, C., Rodríguez-Nieto, C. A., & Font, V. (2024). The Role Played by Extra-mathematical Connections in the Modelling Process. AIEM - Avances de investigación en educación matemática, 25, 81-103. https://doi.org/10.35763/aiem25.6363

Lianawati, I., & Purwasih, R. (2018). Analysis Ability of Mathematical Connection of SMP students in Comparative Material in Review of Gender Differences. Daya Matematis: Jurnal Inovasi Pendidikan Matematika, 6(1), 14-23.

Manchego, K. A., Utria, Y. Y., & Aroca, A. A. (2024). Conexiones etnomatemáticas en el aula con el trompo de tapitas. Avances de investigación en educación matemática: AIEM, (25), 105-130. https://doi.org/10.35763/aiem25.6404

Mansilla, L., Castro, A., & Rodríguez-Nieto, C. (2023). Conexiones etnomatemáticas en el aula: implementación de una secuencia etnomatematica basada en la pesca del sur de Chile. Información tecnológica, 34(2) 53-64 http://dx.doi.org/10.4067/s0718-07642023000200053

McMillan, B. (2018). Connecting the Multiplicative Field with Student Mathematical Thinking (Doctoral dissertation). University of California, Los Angeles.

Mhlolo, M. K. (2012). Mathematical connections of a higher cognitive level: A tool we may use to identify these in practice. African Journal of Research in Mathematics, Science and Technology Education, 16(2), 176–191.

Ministry of National Education [MEN]. (2006). Estándares Básicos de Competencias. Matemáticas. Bogotá: Ministerio de Educación Nacional.

Ministry of Education [MOE] (2006a). Mathematics syllabuses – Primary. Singapore: Author.

Ministry of Education [MOE] (2006b). Mathematics syllabuses – Lower secondary. Singapore: Author.

Moon, K., Brenner, M. E., Jacob, B., & Okamoto, Y. (2013). Prospective secondary mathematics teachers’ understanding and cognitive difficulties in making connections among representations. Mathematical Thinking and Learning, 15(3), 201-227.

Mwakapenda, W. (2008). Understanding connections in the school mathematics curriculum. South African Journal of Education, 28(2), 189-202.

National Council of Teachers of Mathematics [NCTM]. (2000). Principles and standards for school mathematics. Reston: National Council of Teachers of Mathematics.

Özgen, K. (2013). Self-Efficacy Beliefs In Mathematical Literacy And Connections Between Mathematics And Real World: The Case Of High School Students. Journal of International Education Research, 9(4), 305–316.

Pambudi, D. S., Budayasa, I. K., & Lukito, A. (2018). Mathematical connection profile of junior high school students in solving mathematical problems based on gender difference. International Journal of Scientific Research and Management, 6(08), 73-78. https://doi.org/10.18535/ijsrm/v6i8.m01

Peters, A. (2024). Using the TIMSS curriculum model to develop a framework for coherence and its role in developing mathematical connections. Research in Mathematics Education, 26(2), 300–324. https://doi.org/10.1080/14794802.2024.2371026

Pino-Fan, L. R., Godino, J. D., & Font, V. (2018). Assessing key epistemic features of didactic-mathematical knowledge of prospective teachers: the case of the derivative. Journal of Mathematics Teacher Education, 21, 63-94. https://doi.org/10.1007/s10857-016-9349-8

Pirasa, N. (2016). The Connection Competencies of Pre-Service Mathematics Teachers about Geometric Concepts to Daily-Life. Universal Journal of Educational Research, 4(12), 2840-2851.

Prediger, S., Bikner-Ahsbahs, A., & Arzarello, F. (2008). Networking strategies and methods for connection theoretical approaches: First steps towards a conceptual framework. ZDM-The International Journal on Mathematics Education, 40 (2), 165–178. https://doi.org/10.1007/s11858-008-0086-z

Radford, L. (2008). Connecting theories in mathematics education: challenges and possibilities. ZDM-The International Journal on Mathematics Education, 40, 317–327. https://doi.org/10.1007/s11858-008-0090-3

Rodríguez-Nieto, C. A. (2020). Explorando las conexiones entre sistemas de medidas usados en prácticas cotidianas en el municipio de Baranoa. IE Revista de Investigación Educativa de la REDIECH, 11, e-857.

Rodríguez-Nieto, C. A. (2021a). Conexiones etnomatemáticas entre conceptos geométricos en la elaboración de las tortillas de Chilpancingo, México. Revista de investigación, desarrollo e innovación, 11(2), 273-296. https://doi.org/10.19053/20278306.v11.n2.2021.12756

Rodríguez-Nieto, C. A. (2021b). Análisis de las conexiones matemáticas en la enseñanza y aprendizaje de la derivada basado en un networking of theories entre la teoría de las conexiones y el enfoque ontosemiótico [Analysis of mathematical connections in the teaching and learning of the derivative based on a networking of theories between the theory of connections and the onto-semiotic approach] [Unpublished doctoral dissertation] Universidad Autónoma de Guerrero.

Rodríguez-Nieto, C. A., Rodríguez-Vásquez, F. M., & García-García, J. (2021). Pre-service mathematics teachers’ mathematical connections in the context of problem-solving about the derivative. Turkish Journal of Computer and Mathematics Education, 12(1), 202-220. https://doi.org/10.16949/turkbilmat.797182

Rodríguez-Nieto, C & Escobar-Ramírez, Y. (2022). Conexiones Etnomatemáticas en la Elaboración del Sancocho de Guandú y su Comercialización en Sibarco, Colombia. Bolema: Boletim de Educação Matemática. 36 (74), 971-1002. http://dx.doi.org/10.1590/1980-4415v36n74a02

Rodríguez-Nieto, C. A., Nuñez-Gutierrez, K., Rosa, M., & Orey, D. (2022). Conexiones etnomatemáticas y etnomodelación en la elaboración de trompos y tacos de carne. Más allá de un antojito mexicano [Ethnomathematical connections and ethnomodelling in the preparation of trompos and meat tacos. Beyond a Mexican snack]. Revemop, 4, Article e202202. https://doi.org/10.33532/revemop.e202202

Rodríguez-Nieto, C., & Alsina, Á. (2022). Networking Between Ethnomathematics, STEAM Education and the Globalized Approach to Analyze Mathematical Connections in Daily Practices. Eurasia Journal of Mathematics Science and Technology Education, 18(3), em2085. https://doi.org/10.29333/ejmste/11710

Font, V., & Rodríguez-Nieto, C. A. (2024). Naturaleza y papel de las conexiones en la enseñanza y el aprendizaje de las matemáticas. AIEM - Avances de investigación en educación matemática, 25, 1-7. https://doi.org/10.35763/aiem25.6777

Rodríguez-Nieto, C. A., Pabón-Navarro, M. L., Cantillo-Rudas, B. M., Sudirman, S., & Font, V. (2025a). The potential of ethnomathematical and mathematical connections in the pre-service mathematics teachers’ meaningful learning when problems-solving about brick-making. Infinity Journal, 14(2), 419-444. https://doi.org/10.22460/infinity.v14i2.p419-444

Rodríguez-Nieto, C. A., Cabrales-González, H. A., Arenas-Peñaloza, J., Schnorr, C. E., & Font, V. (2024). Onto-semiotic analysis of Colombian engineering students’ mathematical connections to problems-solving on vectors: A contribution to the natural and exact sciences. Eurasia Journal of Mathematics, Science and Technology Education, 20(5), Article em2438. https://doi.org/10.29333/ejmste/14450

Rodríguez-Nieto, C., Escobar-Ramírez, Y., Font, V., & Aroca, A. (2023a). Ethnomathematical and mathematical connections activated by a teacher in mathematical problems posing and solving. Acta Scientiae. Revista de Ensino de Cięncias e Matemática, 25(1), 86-121. https://doi.org/10.17648/acta.scientiae.7356

Rodríguez-Nieto, C. A., Rodríguez-Vásquez, F. M. & Font, V. (2023b). Combined use of the extended theory of connections and the onto-semiotic approach to analyze mathematical connections by relating the graphs of f and f’. Educational Studies in Mathematics, 114, 63-88. https://doi.org/10.1007/s10649-023-10246-9

Rodríguez-Nieto, C. A., Cervantes-Barraza, J. A., & Font, V. (2023c). Exploring mathematical connections in the context of proof and mathematical argumentation: A new proposal of networking of theories. Journal of Mathematics, Science and Technology Education, 19(5), 1-20. https://doi.org/10.29333/ejmste/13157

Rodríguez-Nieto, C. A., & Font, V. (2025). Mathematical connections promoted in multivariable calculus’ classes and in problems-solving about vectors, partial and directional derivatives, and applications. Eurasia Journal of Mathematics, Science and Technology Education, 21(4), 1-27. https://doi.org/10.29333/ejmste/16187

Rodríguez-Nieto, C. A., Font, V., Borji, V., & Rodríguez-Vásquez, F. M. (2022a). Mathematical connections from a networking theory between extended theory of mathematical connections and onto-semiotic approach. International Journal of Mathematical Education in Science and Technology, 53(9), 2364-2390. https://doi.org/10.1080/0020739X.2021.1875071

Rodríguez-Nieto, C. A., Rodríguez-Vásquez, F. M., & Font, V. (2022b). A new view about connections. The mathematical connections established by a teacher when teaching the derivative. International Journal of Mathematical Education in Science and Technology, 53(6), 1231-1256. https://doi.org/10.1080/0020739X.2020.1799254

Rodríguez-Nieto, C. A., Rodríguez-Vásquez, F. M., & García-García, J. (2021b). Exploring university Mexican students’ quality of intra-mathematical connections when solving tasks about derivative concept. EURASIA Journal of Mathematics, Science and Technology Education, 17(9), em2006. https://doi.org/10.29333/ejmste/11160

Rodríguez-Nieto, C. A., Pabón-Navarro, M. L., Cantillo-Rudas, B. M., Sudirman, S., & Font, V. (2025a). The potential of ethnomathematical and mathematical connections in the pre-service mathematics teachers’ meaningful learning when problems-solving about brick-making. Infinity Journal, 14(2), 419-444. https://doi.org/10.22460/infinity.v14i2.p419-444

Rodríguez-Nieto, C. A., Olivero-Acuña, R. R., Ocampo-Medina, D. E., Dominguez-Barceló, S. J., & García-García, J. (2025b). Niveles de conocimiento aritmético de estudiantes de educación primaria activados al resolver problemas aditivos: un análisis desde las conexiones matemáticas. Bolema: Boletim de Educação Matemática, 39, e230228. https://doi.org/10.1590/1980-4415v39a230228

Rodríguez-Nieto, C. A., Cabarcas-Jiménez, J. D., Sarmiento-Reales, A. L., Cantillo-Rudas, B. M., Berrio-Valbuena, J. D., Sudirman, S., & Inostroza, A. C. (2025c). High school student levels of arithmetic knowledge when solving additive word problems: А case study. International Electronic Journal of Mathematics Education, 20(3), em0831. https://doi.org/10.29333/iejme/16230

Rodríguez-Vásquez, F. M., García-Salmerón, V. N., & Romero-Valencia, J. (2024). Conexiones matemáticas asociadas al concepto vector en un texto de secundaria de la nueva escuela Mexicana [Mathematical connections associated with the vector concept in a secondary school text from the new Mexican school]. AIEM-Avances de Investigación en Educación Matemática, 25, 151-173. https://doi.org/10.35763/aiem25.6442

Rodríguez-Nieto, C. A., Font, V., & Rodríguez-Vásquez, F. M. (2022c). Literature review on networking, of theories developed in mathematics education context. EURASIA Journal of Mathematics, Science and Technology Education, 18(11), em2179. https://doi.org/10.29333/ejmste/12513

Safi, F., & Desai, S. (2017). Promoting mathematical connections using three-dimensional manipulatives. Mathematics Teaching in the Middle School, 22(8), 488-492.

Sari, P., Hadiyan, A., & Antari, D. (2018). Exploring derivatives by means of GeoGebra. International Journal on Emerging Mathematics Education, 2(1), 65-78. http://dx.doi.org/10.12928/ijeme.v2i1.8670

São Paulo [state]. (2012). Currículo do Estado de São Paulo: matemática e suas tecnologias. Secretaria da Educação, São Paulo, Brasil.

Son, A. L. (2022). The Students' Abilities on Mathematical Connections: A Comparative Study Based on Learning Models Intervention. Mathematics Teaching Research Journal, 14(2), 72-87.

Sudirman, Rodríguez-Nieto, C. A., & Bonyah, E. (2024). Integrating ethnomathematics and ethnomodeling in Institutionalization of school mathematics concepts: A study of fishermen community activities. Journal on Mathematics Education, 15(3), 835-858. http://doi.org/10.22342/jme.v15i3.pp835-858

Universidad Autónoma de Guerrero [UAGro]. (2009). Plan de Estudios de la licenciatura en Matemáticas. México: Autor.

Universidad Autónoma de Guerrero [UAGro]. (2020). Plan de Estudios de la licenciatura en Matemáticas. México: Autor.

Vargas, J. P., Vanegas, Y. M., & Giménez, J. (2024). Conexiones extra-matemáticas que establecen futuros maestros de Educación Primaria al diseñar tareas escolares geométricas. Avances de investigación en educación matemática: AIEM, (25), 57-80.

Wittmann, E. C. (2021). Connecting Mathematics and Mathematics Education: Collected Papers on Mathematics Education as a Design Science. Springer.

Yavuz-Mumcu, H. (2018). Matematiksel ilişkilendirme becerisinin kuramsal boyutta incelenmesi: türev kavramı örneği. Turkish Journal of Computer and Mathematics Education, 9(2), 211-248. DOI: 10.16949/turkbilmat.379891.

Zengin, Y. (2019). Development of mathematical connection skills in a dynamic learning environment. Education and Information Technologies, 24(3), 2175-2194.

Weingarden, M. (2024). The role of mathematical connections in object-level and meta-level learning: a potential lens for supporting pre-service teacher learning. Research in Mathematics Education, 26(2), 258–282. https://doi.org/10.1080/14794802.2024.2371542

Downloads

Published

2025-05-07

How to Cite

Nieto, C. A. R. (2025). The Extended Theory of Connections (ETC) and its Contributions to Mathematics Education: Some Reflections on the Path Taken. MATH-EDU: Jurnal Ilmu Pendidikan Matematika, 10(1), 108–133. https://doi.org/10.32938/jipm.v10i1.9434

Similar Articles

<< < 1 2 

You may also start an advanced similarity search for this article.