Errors and Their Causes in Solving One-Variable Linear Equations Among Mexican High School Students

Authors

  • Leineri Morales-Benitez Universidad Autónoma de Guerrero
  • Gerardo Salgado-Beltrán Universidad Autónoma de Guerrero
  • Aloisius Loka Son Universitas Timor https://orcid.org/0000-0003-1655-6508
  • Javier García-García Universidad Autónoma de Guerrero

DOI:

https://doi.org/10.32938/jipm.v10i1.9391

Keywords:

Errors, Causes, Linear Equation, Task-Based Interviews, High School Mexican Students

Abstract

The aim of this study was to identify the errors made by a group of Mexican High School students when solving linear equations, as well as their possible causes. Data collection was conducted through a task-based interview administered to 30 students from a public school in southern Mexico. The results revealed that students made arithmetic errors when solving linear equations, including difficulties in performing operations with integers, handling fractions, applying the distributive property, and transposing terms incorrectly. By analyzing students' reasoning, it was inferred that these errors stem mainly from poor assimilation of arithmetic concepts, affective and emotional factors, and the presence of cognitive obstacles. Additionally, both procedural and conceptual algebraic errors were identified. According to the conceptual framework, these errors originate from limited manipulation of algebraic language, incorrect application of procedural rules, and didactic and cognitive obstacles. These findings encourage reflection on future research aimed at improving the learning of linear equations at the high school level.

Author Biographies

Leineri Morales-Benitez, Universidad Autónoma de Guerrero

Mathematics Education

Aloisius Loka Son, Universitas Timor

Mathematics Education

References

Abrate, R., Pochulu, M. & Vargas, J. (2006). Errores y dificultades en Matemática: análisis de causas y sugerencias de trabajo [Errors and difficulties in Mathematics: Analysis of causes and work suggestions]. Universidad Nacional de Villa María.

Adu, E., Assuah, C. K., & Asiedu-Addo, S. K. (2015). Students’ errors in solving linear equation word problems: Case study of a Ghanaian senior high school. African Journal of Educational Studies in Mathematics and Sciences, 11, 17-30.

Alqahtani, M., Powell, A., Webster, V., & Tirnovan, D. (2022). How a measuring perspective influences pre-service teachers’ reasoning about fractions with discrete and continuous models. International Electronic Journal of Elementary Education, 14(3), 441-458. https://goo.su/NvFHP

Amaya-García, L. J. (2022). Dificultades en el aprendizaje de los números enteros en estudiantes de grado séptimo [Difficulties in learning integers in seventh-grade students]. Revista Voces y Realidades Educativas, (9), 27-41. https://goo.su/owNxdr

Bharti, M. (2022). Learning and Teaching Fractions At The Elementary Level. Advanced Research and Publications, 5(7), 8-13. https://goo.su/NvFHP

Cadenas, R. (2007). Carencias, dificultades y errores en los conocimientos matemáticos en estudiantes del primer semestre de la Escuela de Educación de la Universidad de los Andes [Deficiencies, difficulties, and errors in mathematical knowledge among first-semester students of the School of Education at the University of the Andes]. Orbis, 6, 68-84. https://goo.su/IGpRjPJ

Castellanos, L. & Moreno, I. (1997). Secuencia de enseñanza para solucionar ecuaciones de primer grado con una incógnita [eaching sequence for solving first-degree equations with one unknown]. EMA, 2(3), 247-258.

Castro-Rodríguez, E. y Rico, L. (2021). Knowledge of preservice elementary teachers on fractions. Uniciencia, 35(2), 144-160. http://dx.doi.org/10.15359/ru.35-2.10

Chazana, D., Yerushalmyb, M., & Leikinb, R. (2008). An analytic conception of equation and teachers’ views of school algebra. Journal of Mathematical Behavior, 87-100. https://goo.su/UKUeN

Chevrier, M., Tulis, M., Hepplestone, S., & Järvenoja, H. (2019). Exploring the antecedents and consequences of epistemic emotions. Learning and Instruction, 63, 1–18. https://doi.org/10.1016/j.learninstruc.2019.101217

Diego-Mantecón, J. M., & Córdoba-Gómez, F. J. (2019). Adaptación y validación del MRBQ (Mathematics-Related Beliefs Questionnaire) al contexto colombiano con estudiantes de secundaria. Revista Educación Matemática, 31(1), 66–88.

Egodawatte, G. (2011). Secondary school students’ misconceptions in Algebra. (Doctoral dissertation). University of Toronto. https://n9.cl/e8s1a4

García-García, J. (2024). Mathematical Understanding Based on the Mathematical Connections Made by Mexican High School Students Regarding Linear Equations and Functions. The Mathematics Enthusiast, 21(3), 673-718. https://doi.org/10.54870/1551–3440.1646

García-González, M. S., Ramírez-Gómez, B., & Navarro-Sandoval, C. (2021). Situaciones que originan emociones en estudiantes de matemáticas [Situations that cause emotions in mathematics students]. Bolema: Boletim de Educação Matemática, 35(69), 39-62.

Goldin, G. A. (2000). A scientific perspective on structured, task-based interviews in mathematics education research. In A. E. Kelly y R. A. Lesh (eds.), Handbook of research design in mathematics and science education (pp. 517-545). Lawrence Erlbaum Associates. https://n9.cl/irpxvs

Gómez-Chacón, I. M. (2000). Affective influences in the knowledge of mathematics. Educational Studies in Mathematics, 43(1), 149–168. https://doi.org/10.1023/A:1017518811879

Hall, R. (2002). An analysis of errors made in the solution of simple linear equations. Philosophy of Mathematics Education Journal, 15, 113-143. https://n9.cl/vo5yz

Kaput, J. (2000). Transforming algebra from an engine of inequality to an engine of mathematical power by “algebrafying” the K-12 curriculum. National Center for Improving Student Learning and Achievement in Mathematics and Science. Dartmouth, MA. https://files.eric.ed.gov/fulltext/ED441664.pdf

Kieran, C. & Filloy, E. (1989). Learning school algebra from a psychological perspective. Enseñanza de las Ciencias, 7(3), 229-240.

Kieran, C. (1980). The interpretation of the equal sign: Symbol for an equivalence relation vs an operator symbol. Karplus, 1, 163-169.

Maizora, S., & Juandi, D. (2022). Third grade elementary school students’ conception of number line. AIP Conference Proceedings, 2468(1), 070065. https://doi.org/10.1063/5.0102551

Medrano, L., Flores-Kanter, E., Moretti, L. & Pereno, G. (2016). Effects of induction of positive and negative emotional states on academic self-efficacy beliefs in college students. Psicología Educativa, 22(2),135-41. http://dx.doi.org/10.1016/j.pse.2015.03.003

Melquiades-Martínez, M. D. C., Salgado-Beltrán, G., & García-García, J. (2023). La fracción como punto en la recta numérica en el saber de estudiantes de quinto grado de Primaria [The fraction as a point on the number line in the knowledge of fifth grade students of Primary School]. Números, (114), 63-81.

Mengistie, S. M. (2020). Enhancing students’ understanding of linear equation with one variable through teaching. International Journal of Trends in Mathematics Education Research, 3(2), 69-80.

Merriam, S. B. & Tisdell, E. J. (2016). Qualitative research: A guide to design and implementation. Jossey-Bass. https://n9.cl/6xqrx

Millán, E. F. & Molina, M. (2016). Inquiry into the conceptual knowledge of algebraic symbolism among secondary school students through problem invention. Enseñanza de las Ciencias, 34(1), 53-71. https://n9.cl/dl6h5

Molina, M. (2009). A proposal for curricular change: Integration of algebraic thinking in primary education. PNA, 3(3), 135-156. https://n9.cl/u27ws

Nurjannah, S. K., & Jupri, A. (2024). Symbol sense ability of students to solve linear, quadratic, and rational equations. KnE Social Sciences, 9(13), 667–675. https://goo.su/E3fk2L0

Palarea, M. & Socas, M. (1994). Algunos obstáculos cognitivos en el aprendizaje del lenguaje algebraico [Some cognitive obstacles in learning algebraic language]. Suma, 16, 91-98. https://n9.cl/dhfd2

Pérez, M., Diego, J. M., Polo, I. & González, M. J. (2019). Causes of errors in solving linear equations with one unknown. PNA, 13(2), 84-103. https://n9.cl/h5hkw

Pirie, S. & Martin, L. (1997). The equation, the whole equation and nothing but the equation! One approach to the teaching of linear equations. Educational Studies in Mathematics, 34(2), 159-181. https://n9.cl/kzlgf

Putra, Z. H. (2018). A praxeological analysis of pre-service elementary teachers’ knowledge of rational numbers. Recherches En Didactique Des Mathematiques, 38(3), 315-364. https://n9.cl/62dlz

Rico, L. (1995). Errores y dificultades en el aprendizaje de las matemáticas [Errors and difficulties in learning mathematics]. In J. Kilpatrik, P. Gómez y L. Rico (Eds.), Educación Matemática (pp. 69-108). Grupo Editorial Iberoamérica. https://n9.cl/ojo4a

Rodríguez, G., Gil, J. & García, E. (1999). Metodología de la investigación cualitativa [Qualitative research methodology]. Aljibe. https://n9.cl/9qokz

Ruano, R. M., Socas, M. M. & Palarea, M. M. (2008). Analysis and classification of errors made by secondary school students in formal substitution, generalization, and modeling processes in algebra. PNA, 2(2), 61-74. https://n9.cl/9qokz

SEP. (2023). La Nueva Escuela Mexicana [The New Mexican School]. Secretaría de Educación Pública.

Socas, M. M. (1997). Dificultades, obstáculos y errores en el aprendizaje de las matemáticas en la educación secundaria [Difficulties, obstacles and errors in learning mathematics in secondary education]. In L. Rico, (Ed.), La educación matemática en la enseñanza secundaria (pp. 125-154). Horsori. https://n9.cl/bvl40

Socas, M. M. (2007). Dificultades y errores en el aprendizaje de las matemáticas. Análisis desde el enfoque lógico semiótico [Difficulties, obstacles, and errors in learning mathematics in secondary education]. In M. Camacho, P. Flores and P. Bolea (Eds.), Investigación en Educación Matemática XI (pp. 19-52). SEIEM.

Socas, M. M. (2011). La enseñanza del álgebra en la educación obligatoria. Aportaciones de la investigación [Teaching algebra in compulsory education: Contributions from research]. Números, 77, 5-34. https://n9.cl/9czeh

Usán, P., Salavera, C. & Teruel, P. (2019). School motivation, goal orientation and academic performance in secondary education students. Psychology Research and Behavior Management, 12, 877-87. http://dx.doi.org/10.2147/PRBM.S215641

Utami, A. J. L., & Kusumah, Y. S. (2024). Error analysis of the 8th grade students in solving story problems on linear equations in two variables. AIP Conference Proceedings, 2982(1), 012091.

Vaiyavutjamai, P. & Clements, M. K. (2006). Effects of classroom instruction on students’ understanding of quadratic equations. Mathematical Education Research Journal, 18(1), 47-77. https://goo.su/2YHfy

Wicaksono, A., Prabawanto, S., & Suryadi, D. (2024). How students' obstacle in solving mathematical tasks deal with linear equation in one variabel. Al-Jabar: Jurnal Pendidikan Matematika, 15(1), 33-44.

Yansa, H., Retnawati, H., & Janna, M. (2021). Misconceptions of basic algebra on linear equation in one variable material. Journal of Physics: Conference Series, 1882(1), 012091. https://doi.org/10.1088/1742-6596/1882/1/012091

Yansa, H., Retnawati, H., & Janna, M. (2021). Misconceptions of basic algebra on linear equation in one variable material. Journal of Physics: Conference Series, 1882(1), 012091. https://doi.org/10.1088/1742-6596/1882/1/012091

Downloads

Published

2025-04-23

How to Cite

Morales-Benitez, L., Salgado-Beltrán, G., Son, A. L., & García-García, J. (2025). Errors and Their Causes in Solving One-Variable Linear Equations Among Mexican High School Students. MATH-EDU: Jurnal Ilmu Pendidikan Matematika, 10(1), 47–65. https://doi.org/10.32938/jipm.v10i1.9391

Most read articles by the same author(s)

Similar Articles

<< < 1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.